Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Technical Paper

State Estimation Based on Interacting Multiple Mode Kalman Filter for Vehicle Suspension System

2017-03-28
2017-01-1480
The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
Technical Paper

A Uniform Hardware-in-the-Loop Test Rig for Modular and Integrated Testing of Commercial Vehicle Electronic Braking System

2016-09-27
2016-01-8042
This paper describes a uniform Hardware-In-the-Loop (HiL) test rig for the different types of Electronic Braking System (EBS). It is applied to both modular testing and integrated testing. This test rig includes a vehicle dynamic model, a real-time simulation platform, an actual brake circuit and the EBS system under test. Firstly, the vehicle dynamic model is a highly parameterized commercial vehicle model. So it can simulate different types of commercial vehicle by different parameter configurations. Secondly, multi-types of brake circuit are modeled using brake components simulation library. So, it can test the EBS control unit independently without the influence of any real electro-pneumatic components. And a software EBS controller is also modeled. So it can test the algorithm of EBS offline. Thirdly, all real electro-pneumatic components without real gas inputted are connected to the real-time test platform through independent program-controlled relay-switches.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Journal Article

Regenerative Braking Control Enhancement for the Power Split Hybrid Architecture with the Utilization of Hardware-in-the-loop Simulations

2013-04-08
2013-01-1466
This study presents the utilization of the hardware-in-the-loop (HIL) approach for regenerative braking (regen) control enhancement efforts for the power split hybrid vehicle architecture. The HIL stand used in this study includes a production brake control module along with the hydraulic brake system, constituted of an accelerator/brake pedal assembly, electric vacuum booster and pump, brake hydraulic circuit and four brake calipers. This work presents the validation of this HIL simulator with real vehicle data, during mild and heavy braking. Then by using the HIL approach, regen control is enhanced, specifically for two cases. The first case is the jerk in deceleration caused by the brake booster delay, during transitions from regen to friction braking. As an example, the case where the regen is ramped out at a low speed threshold, and the hydraulic braking ramped in, can be considered.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Technical Paper

Accessory Drive Belt Pulley Entry Friction Study and Belt Chirp Noise

1999-05-17
1999-01-1709
Accessory belt “chirp” noise is a major quality issue in the automotive and truck industry. Chirp noise control is often achieved by very tight pulley alignment, a guideline being .33 degree maximum belt entry angle into each grooved pulley. Occasionally belts will chirp at pulleys where the system alignment is this good or better. This study offers an explanation for such occurrences. This is a study to see if fundament groove side sticking theory correlates with the belt entry angle, and how the coefficient of friction relates to this entry angle. The study combines theory with lab data. In summary, the study fundamentally links the coefficient of friction of the belt to the belt chirp noise phenomenon, and allows the projection of a belt's general tendency to chirp to be predicted by the measurement of belt coefficient of friction on a test stand.
Technical Paper

The Measurement of Impact Forces under Dynamic Crush using a Drop Tower Test Facility

1983-02-01
830467
The design of structural components requires a knowledge of their crush characteristics, particularly the load-carrying capacity during dynamic crash. Although many attempts have been made to develop analytical techniques or methods for predicting these characteristics, experimental tests are still needed to provide data for real structures for either development or validation. This report describes an experimental method for determining the force-deflection characteristics during dynamic crush of square steel columns using a drop tower test facility. The custom-designed load cells were used for the measurements of the impact and the reaction forces at both ends of specimens, which were subjected to a 30 mph impact. Instrumentation for data acquisition and detailed data reduction for analysis are also presented.
X