Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Influence of Intake Valve Lift on Flow Capacity of Intake Port

2019-04-02
2019-01-0223
A three-dimensional model of a diesel engine intake port was established and was verified by steady-flow test. Based on this model, the influence of intake valve lift on the flow capacity of intake port was studied and a design method of maximum valve lift was put forward. The results show that, under different intake pressure and relative pressure difference conditions, the discharge coefficient increases first and then converges with the increase of valve lift. Under the same valve lift condition, with the increase of relative pressure difference, the discharge coefficient decreases slightly in subsonic state and decreases sharply from subsonic state to supersonic state, but the mass flow rate increases slightly. The optimum ratio of valve lift and valve seat diameter is related to relative pressure difference, it increases first and then keeps constant with the increase of relative pressure difference.
Technical Paper

Influence of Key Section Parameters of Exhaust Port on Flow Capacity

2019-04-02
2019-01-0200
A three-dimensional model of a diesel engine exhaust port was established. The reliability of modeling method and the exhaust port model were verified by the steady-flow test, PIV test and pressure field test. Based on the exhaust port model, the influence of the key section parameters such as inlet area S1, throat area S2, and outlet area S3 on the flow capacity of the exhaust port was studied. The results show that, under different pressure difference and exhaust back pressure conditions, the mass flow rate increases first and then converges with the increase of the area ratio of outlet and inlet or the area ratio of throat and inlet. With the increase of the relative pressure difference, the optimal area ratio of outlet and inlet decreases and converges to 1.02, but the optimal area ratio of throat and inlet increases and converges to 1.13.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Effect of Ethanol Addition on Soot Formation of Gasoline in Laminar Diffusion Flames

2017-10-08
2017-01-2396
Soot emission, known as PM (particulate matter), is becoming a big issue for GDI engines as the emission regulations being increasingly stricter. It is found that ethanol, as an oxygenated bio-fuel, can reduce the soot emission when added to gasoline. In order to fully understand the effect of ethanol on soot reducing, the soot characteristics of ethanol/gasoline blends were studied on laminar diffusion flames. In this experiment, the blending ratio of ethanol/gasoline was set as E0/20/40/60/80. Considering the carbon content decreasing due to ethanol addition, carbon mass flow rate was remained constant. The two-dimensional distributions of soot volume fraction were measured quantitatively by using two-color laser induced incandescence technique. The results showed that ethanol is able to decrease the soot significantly, but the effect of ethanol on soot reduction is weakened with the increasing ethanol ratio.
X