Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Properties and Additives of Gasoline on Low-Speed Pre-Ignition in Turbocharged Engines

2022-08-30
2022-01-1077
Gasoline-related factors that affect low-speed pre-ignition (LSPI) include the distillation properties of gasoline, manganese (Mn), ethanol, diesel fuel, detergent for aftermarket, and iron (Fe). The combined effect of Mn with ethanol or high calcium engine oil (high-Ca oil) has not been sufficiently clarified. Therefore, appropriate countermeasures for LSPI have not yet been implemented. To clarify the effect of the gasoline properties and additives on LSPI, engine tests were conducted using gasoline with different “PM Index” values, an indicator of distillation properties, different concentrations of Mn, ethanol, diesel fuel, detergent, Fe, and high-Ca oil. The results showed that the LSPI frequency tended to increase with the PM Index, Mn up to 60 ppm, diesel fuel up to 2 vol.%, and detergent up to three times the standard amount.
Technical Paper

MR20DD Motoring Fuel Economy Test for 0W-12 and 0W-8 Low Viscosity Engine Oil

2019-12-19
2019-01-2295
The SAE J300 classification was expanded to 0W-12 and 0W-8 viscosity grades in 2015, and lower viscosity engine oils have been studied in the industry. ILSAC GF-6B that will be introduced in 2020 will specify a 0W-16 requirement, but 0W-12 and 0W-8 grades are not considered. Because engine oil equal to or higher than the 0W-20 grade is recommended for almost all engines globally, suitable engine tests for 0W-12 and 0W-8 do not exist. Therefore, the Japan Automobile Manufacturers Association, Petroleum Association of Japan and Society of Automotive Engineers of Japan decided to establish new 0W-12 and 0W-8 low viscosity engine oil specifications. It is referred to as JASO GLV-1, and together with a new fuel economy engine test procedure, these engine oils for better fuel economy will be put on the Japanese market in 2019. Motoring friction torque tests are widely used to ascertain the friction reduction effect of fuel-economy engine oils.
Technical Paper

ISO 26262 C Class Evaluation Method for Motorcycles by Expert Riders Incorporating Technical Knowledge Obtained from Actual Riding Tests

2017-11-05
2017-32-0057
In applying the ISO 26262 controllability classification for motorcycles in actual riding tests, a subjective evaluation by expert riders is considered to be the appropriate approach from the viewpoint of safety. We studied the construction of an expert-rider-based C class evaluation method for motorcycles and developed some evaluation test cases reproducing various hazardous events. We determined that it was necessary to accumulate more evaluation cases for further representative scenarios and that, to avoid variations in such evaluations, a method in which different expert riders can carry out testing following a common understanding had to be devised. Considering these problems for practical application, this study aimed at establishing an actual riding test method for C class evaluation by expert riders and to develop a deeper understanding of test procedures and management.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Journal Article

Construction of an ISO 26262 C Class Evaluation Method for Motorcycles

2016-11-08
2016-32-0059
For applying ISO 26262 to motorcycles, controllability classification (C class evaluation) by expert riders is considered an appropriate technique. Expert riders have evaluated commercial product development for years and can appropriately conduct vehicle tests while observing safety restrictions (such as avoiding the risk of falling). Moreover, expert riders can ride safely and can stably evaluate motorcycle performance even if the test conditions are close to the limits of vehicle performance. This study aims to construct a motorcycle C class evaluation method based on an expert rider’s subjective evaluation. On the premise that expert riders can rate the C class, we improved a test procedure that used a subjective evaluation sheet as the concrete C class evaluation method for an actual hazardous event.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Technical Paper

Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component

2015-04-14
2015-01-0533
In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency. It is found that the implemented Chaboche model is generally more computationally efficient than Sehitoglu model, though they are almost identical in regard to accuracy.
Technical Paper

Experimental Study of B20 Combustion and Emission Characteristics under Several EGR Conditions

2015-04-14
2015-01-1078
It is found that biodiesel has a great potential to reduce the nitrogen oxides (NOx) and soot emissions simultaneously in low temperature combustion (LTC) mode. The objective of this study is to investigate the combustion and emission characteristics of 20% biodiesel blend diesel fuel (B20) under several exhaust gas recirculation (EGR) conditions for LTC application. An experimental investigation of B20 was conducted on a four-stroke common rail direct injection diesel engine at 2000rpm and 25% load condition. The EGR ratio was adjusted from 10% to 66%, and the injection pressure was tuned from 100MPa to 140MPa. The result showed that B20 generated less soot emission than conventional diesel with increasing EGR ratio, especially when the EGR ratio was beyond 30%. Soot emission increased with increasing EGR ratio up to 50% EGR, after which there is a steep decrease in particular matter (PM).
Technical Paper

Basic Characteristics of Motorcycle Riding Maneuvers of Expert Riders and Ordinary Riders

2014-11-11
2014-32-0025
ISO26262 was intended only for passenger cars but can be applied to motorcycles if the Controllability (C) is subjectively evaluated by expert riders. Expert riders evaluate motorcycle performance from the viewpoint of ordinary riders. However, riding maneuvers of ordinary riders have not been confirmed by objective data. For this reason, it is important to understand the basic characteristics of riding maneuvers of both expert and ordinary riders. This study seeks to confirm the compatibility between the riding maneuvers of expert riders and those of ordinary riders. The riding maneuvers and vehicle behavior of four expert riders and 16 ordinary riders were compared using the results of a test assuming normal running.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Technical Paper

Renewable Ethanol Use for Enabling High Load Clean Combustion in a Diesel Engine

2013-04-08
2013-01-0904
As a renewable energy source, the ethanol fuel was employed with a diesel fuel in this study to improve the cylinder charge homogeneity for high load operations, targeting on ultra-low nitrogen oxides (NOx) and smoke emissions. A light-duty diesel engine is configured to adapt intake port fuelling of the ethanol fuel while keeping all other original engine components intact. High load experiments are performed to investigate the combustion control and low emission enabling without sacrificing the high compression ratio (18.2:1). The intake boost, exhaust gas recirculation (EGR) and injection pressure are independently controlled, and thus their effects on combustion and emission characteristics of the high load operation are investigated individually. The low temperature combustion is accomplished at high engine load (16~17 bar IMEP) with regulation compatible NOx and soot emissions.
Technical Paper

Surrogate Diesel Fuel Models for Low Temperature Combustion

2013-04-08
2013-01-1092
Diesel fuels are complex mixtures of thousands of hydrocarbons. Since modeling their combustion characteristics with the inclusion of all hydrocarbon species is not feasible, a hybrid surrogate model approach is used in the present work to represent the physical and chemical properties of three different diesel fuels by using up to 13 and 4 separate hydrocarbon species, respectively. The surrogates are arrived at by matching their distillation profiles and important properties with the real fuel, while the chemistry surrogates are arrived at by using a Group Chemistry Representation (GCR) method wherein the hydrocarbon species in the physical property surrogates are grouped based on their chemical classes, and the chemistry of each class is represented by using up to two hydrocarbon species.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Journal Article

Study of the Impact of High Biodiesel Blends on Engine Oil Performance

2011-08-30
2011-01-1930
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. This report is designed to determine how high biodiesel blends affect oil quality through testing on 2005 regulations engines with DPFs. When blends of 10-20% rapeseed methyl ester (RME) with diesel fuel are employed with 10W-30 engine oil, the oil change interval is reduced to about a half due to a drop in oil pressure. The oil pressure drop occurs because of the reduced kinematic viscosity of engine oil, which resulting from dilution of poorly evaporated RME with engine oil and its accumulation, however, leading to increased wear of piston top rings and cylinder liners.
Journal Article

Comparison of fuel economy and exhaust emission tests of 4WD vehicles using single-axis chassis dynamometer and dual-axis chassis dynamometer

2011-08-30
2011-01-2058
The demands of application of dual-axis chassis dynamometers (4WD-CHDY) have increased recently due to the improvement of performance of 4WD-CHDY and an increase in the number of 4WD vehicles which are difficult to convert to 2WD. However, there are few evaluations of any differences between fuel economy and exhaust emission levels in the case of 2WD-CHDY with conversion from 4WD to 2WD (2WD-mode) and 4WD-CHDY without conversion to 2WD (4WD-mode). Fuel economy and exhaust emission tests of 4WD vehicle equipped with a typical 4WD mechanism were performed to investigate any differences between the case of the 2WD-mode and the 4WD-mode. In these tests, we measured ‘work at wheel’ (wheel-work) using wheel torque meters. A comparison of the 2WD-mode and the 4WD-mode reveals a difference of fuel economy (2WD-mode is 1.5% better than that of 4WD-mode) and wheel-work (2WD-mode is 3.9% less than that of 4WD-mode). However, there are almost no differences of exhaust emission levels.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
X