Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Response Decoupling Method in Mount Design with Emphasis on Transient Load Conditions

2019-01-18
2018-01-5046
This research examined the focused design, elastic design, energy decoupling, and torque roll axis (TRA) decoupling methods for mount optimization design. Requiring some assumptions, these methods are invalid for some load conditions and constraints. The linearity assumption is advantageous and simplifies both design and optimization analysis, facilitating engineering applications. However, the linearity is rarely seen in real-world applications, and there is no practical method to directly measure the reaction forces in the three locally orthogonal directions, preventing validation of existing methods by experimental results. For nonlinear system identification, there are additional challenges such as unobservable internal variables and the uncertainty of measured data.
Technical Paper

Study on Haptic Maneuver Guidance by Periodic Knocks on Accelerator Pedal

2015-03-10
2015-01-0039
This study proposes a method for presenting maneuver request information of accelerator pedal to a driver via the accelerator pedal itself. By applying periodic force like vibration on an accelerator pedal, information is transferred to the driver without displacing the accelerator pedal. In this study, the authors focus on a saw-tooth wave as the periodic force. When the saw-tooth-waved force is applied on the accelerator pedal, a human driver feels as if the accelerator pedal is knocked by someone periodically. In addition, information about the quantity of requested maneuver can be transferred by the amplitude of the saw-tooth wave. Based on these facts, the saw-tooth wave is modified and optimized empirically with ten human drivers so that the information of direction is transferred most reliably. In addition, the relationship between the amplitude of the saw-tooth wave and requested quantity of the pedal maneuver that the drivers feel is formulated.
Technical Paper

NVH Improvement of Vehicle Powertrain

2012-09-24
2012-01-2007
This paper provides an investigation to improve vehicle powertrain NVH performance via modification of excitation and radiation system of powertrain. First of all, considering different excitation mechanisms of the powertrain, the excitation forces are analyzed. The FEM/BEM coupled analysis and the acoustic transfer vector (ATV) calculation as well as panel contribution analysis are applied to investigating the acoustic characteristics of the powertrain. Then a hybrid approach which couples the transmission gear profile modification for attenuating gear system excitation and the transmission housing modification for reducing transmission housing noise radiation is proposed to improve powertrain NVH performance. Experiment validation is conducted in order to assess the modified results. The assessment shows that this hybrid approach can effectively predict and reduce powertrain noise and vibration.
Technical Paper

Two-stage Gear Driveline Vibration and Noise

2011-05-17
2011-01-1542
Gear meshing noise is a common noise issue in manual transmission, its noise generation mechanism has been studied extensively [1, 2]. But most of time we have situations where multiple gear sets are connected in series and the noise and vibration behavior for a multi-stage gear can be quite different due to vibration inter-actions or interferences among multiple gear sets. In this paper, a two-stage gear driveline model was built using MSC ADAMS. Vibration order contents of a two-stage gear driveline were analyzed by both CAE simulation and theoretical calculations. In addition to gear meshing vibration orders of each gear set, the orders resulted from modulations between individual gear meshing and their harmonics were evident in the results. These special order contents were verified by experimental results, and also evidenced on transmission end of line tester results at transmission supplier GJT in Ganzhou, China.
Technical Paper

Prediction of Structural Acoustic Radiation for Compressor Considering Airflow Pulsed Load

2011-05-17
2011-01-1722
A coupled vibro-acoustic of a compressor modeling process was demonstrated for predicting the acoustic radiation from a vibrating compressor structure based on dynamic response data. FEM based modal analysis of the compressor was performed and the result was compared with experimental data, for the purpose of validating the FE model. Modal based force response analysis was conducted to calculate the compressor's surface vibration velocity on radiating structure, using the load which caused by mechanical excitation as input data. In addition, due to the coolant had oscillating gas pressure, the gas pulsed load was also considered during the dynamic response analysis. The surface vibration velocity solution of the compressor provided the necessary boundary condition input into a finite element/boundary element acoustic code for predicting acoustic radiation.
Technical Paper

Calculating Fractal Dimension of Worn Bearing's Vibration Signals in Automotive Transmission

2003-05-05
2003-01-1487
This paper first discusses the principles of how to identify whether a time series has chaotic characteristics, and explores a method of finding out the embedding dimension of a time series. Then Grassberger-Procaccia (G-P) algorithm is adopted to calculate correlative dimension. After the validity of G-P algorithm is confirmed using several traditional strange attractors, it is applied to calculate the fractal dimension of some vibration signals of an automotive transmission. This article presents how to apply chaos and fractal theories to diagnose the wearing of ball bearings in automotive transmissions based on the analysis of the transmission acceleration vibration signals. The results show that the vibration signals of automotive transmissions have fractal nature. There are certain correlations between a bearing's condition and the fractal dimension of its vibration signal.
Technical Paper

Some Factors in the Subjective Evaluation of Laboratory Simulated Ride

2001-04-30
2001-01-1569
Effects of DOF and subjective method on evaluations of ride quality on the Ford Vehicle Vibration Simulator were studied. Seat track vibrations from 6 vehicles were reproduced on the 6 DOF seat shaker in a DOE with pitch and roll as factors. These appeared in two evaluations of ride/shake; semantic scaling by 30 subjects of 6 vehicles, and paired comparisons by 16 of the subjects on 3 of the vehicles. Both methods found significant vehicle, pitch and roll effects. Order dependence was shown for semantic scaling. The less susceptible paired comparison method gave a different ordering, and is thus preferred.
Technical Paper

Improvement of engine vibration isolating characteristic by using semi- active hydraulic mount

2000-06-12
2000-05-0321
In order to reduce the vibration energy transferred from engine to the chassis of a vehicle and improve the riding comfortability of the vehicle, a new semi-active controlled hydraulic mount is developed which could adjust the vibration isolating effect at wide frequency range. The dynamic characteristic of the new mount could be changed through adjusting the cross-sectional area of its inertia channel. The control strategy of the mount is based on a great deal of engine tests. Test results of the semi-active mount on an engine test bench show that it could optimize the isolation effect according to engine''s working condition.
Technical Paper

Ford “S” Frame

1969-02-01
690004
Since statistics indicate that front impact is the major accident type, Ford has been studying energy-absorbing structures for some time. Early designs such as the “ball and tube” and “rail splitter” were discarded in favor of the “S” frame. Details of the design approach and testing are given in this paper. Design objectives were increased effective collapse distance, compatibility with production practices, and maintenance of satisfactory noise, vibration, and harshness levels. Safety objectives are improved passenger compartment integrity and reduction of seat belt loads. Barrier crash tests at 30 mph (equivalent to collision into standing vehicle at 50 mph) were used to evaluate the design of the “S” frame. Results of testing indicate that occupant restraint with seat belts, combined with front end structural improvements, offer the most promise for injury reduction during service front impact accidents.
X