Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Injury Pattern and Tolerance of Human Pelvis Under Lateral Loading Simulating Car-pedestrian Impact

2003-03-03
2003-01-0165
Numerous studies of pelvic tolerance to lateral impact aimed at protecting car occupants have been conducted on Post Mortem Human Subjects (PMHSs) in a sitting posture. However, it remains unclear whether or not the results of these studies are relevant when evaluating the injury risk to walking pedestrians impacted by a car. Therefore, the first objective of the present study is to determine the injury tolerance and to describe the injury mechanisms of the human pelvis in lateral impacts simulating car-pedestrian accidents. The second objective is to obtain data for validation of mathematical models of the pelvis. In-vitro experiments were conducted on twelve PMHSs in simulated standing position. The trochanter of each PMHS was hit by a ram at speed of 32 km/h, and the pelvic motion was constrained by a bolt. This type of pelvic constraint is difficult to simulate in mathematical models.
Technical Paper

A new legform impactor for evaluation of car aggressiveness in car-pedestrian accidents

2001-06-04
2001-06-0174
The goal of the present study was to develop a new legform impactor that accurately represents both the impact force (i.e., force between the leg and impacting mass)and leg kinematics in lateral impacts simulating car-pedestrian accidents. In its development we utilized the knee joint of the pedestrian dummy called Polar-2 (HONDA R&D) in which the cruciate and collateral ligaments are represented by means of springs and cables, the geometry of the femoral condyles is simplified using ellipsoidal surfaces, and the tibial meniscus is represented by an elastomeric pad. The impactor was evaluated by comparing its responses with published experimental results obtained using postmortem human subjects (PMHS). The evaluation was done under two conditions: 1)impact point near the ankle area (bending tests),and 2)impact point 84 mm below the knee joint center (shearing tests). Two impact speeds were used: 5.56 m/s and 11.11 m/s.
Technical Paper

J-NCAP: Today and tomorrow

2001-06-04
2001-06-0157
The New Car Assessment Program in Japan (JNCAP) was launched in 1995 in order to improve car safety performance. According to this program, installation conditions of safety devices and the results for braking performance and full- frontal crash tests are published every year. Introduction of JNCAP significantly increases the installation rate of safety devices and contributes much in enhancement of safety as seen in the decrease in the average injury severity of drivers and passengers. Side impact and offset frontal crash tests were introduced in 1999 and 2000, respectively. At present, the overall crash safety rating is carried out based on the results of the full-frontal, offset frontal, and side impact tests.
Technical Paper

Reconsideration of injury criteria for pedestrian subsystem legform test~Problems of rigid legform impactor

2001-06-04
2001-06-0206
The legform impactor proposed by EEVC/WG17 is composed of a rigid thigh segment and a rigid lower leg segment. Human bone, however, has flexibility, causing some differences between the EEVC rigid legform impactor and the human leg. This research analyzes the influence of the differences (rigid versus flexible) on the injury criteria. It also reanalyzes the upper tibia acceleration with regard to the fracture index. The rigid legform impactor cannot simulate bone bending motion, so the injury criteria should consider the legform rigidity. It means the injury criteria need to include the bone bending effect. From several PMHS test results, the shearing displacement becomes 23 mm and 20 degrees for bending angle including the bone bending effect. However, the bone bending effect will change with the loading conditions. Therefore, to establish a certain injury criteria for a rigid legform impactor is impossible. To solve this problem, a flexible legform impactor seems to be needed.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Development of Simulation Model and Pedestrian Dummy

1999-03-01
1999-01-0082
Honda has been studying ways of improving vehicle design to reduce the severity of pedestrian injury. Full-scale test using a pedestrian dummy is an important way to assess the aggressiveness of a vehicle to pedestrians. However, from test results it is concluded that current pedestrian dummies have stiffer characteristics than Post Mortem Human Subjects (PMHS). Also, the dummy kinematics during a collision is different from that of a human body. Because of the limitations of current dummies, it was decided to develop a new pedestrian dummy. At the first stage of the project, a computer simulation model that represented the PMHS tests was developed. Joint characteristics obtained from the simulation model were used in building a new pedestrian dummy which has been named Polar I. The advanced frontal crash test dummy, known as Thor, was selected as the base dummy. Modifications were made for the thorax, spine, knee etc.
X