Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Control Research of Nonlinear Vehicle Suspension System Based on Road Estimation

2018-04-03
2018-01-0553
The control parameter of the semi-active suspension system varies with road profile; therefore, in this study a new algorithm based on cuckoo search (CS) optimization method and road estimation was proposed to investigate the characteristics of the nonlinear parameters and at the same time improve the riding comfort. Based on this, a seven degree of freedom full vehicle model was developed with nonlinear damper and spring. The sprung mass acceleration, pitch acceleration, and tire deflection could be selected as the objective functions, and the control current of semi active suspension was selected as optimization variable. A multi-object CS algorithm was utilized to obtain the optimal parameters under different road profiles, and a road estimation algorithm was used to identify the road level. Then the control parameters could be adjusted adaptively according to the level of the road.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Journal Article

Influence of the Upper Body of Pedestrians on Lower Limb Injuries and Effectiveness of the Upper Body Compensation Method of the FlexPLI

2015-04-14
2015-01-1470
Current legform impact test methods using the FlexPLI have been developed to protect pedestrians from lower limb injuries in collisions with low-bumper vehicles. For this type of vehicles, the influence of the upper body on the bending load generated in the lower limb is compensated by setting the impact height of the FlexPLI 50 mm above that of pedestrians. However, neither the effectiveness of the compensation method of the FlexPLI nor the influence of the upper body on the bending load generated in the lower limb of a pedestrian has been clarified with high-bumper vehicles. In this study, therefore, two computer simulation analyses were conducted in order to analyze: (1) The influence of the upper body on the bending load generated in the lower limb of a pedestrian when impacted by high-bumper vehicles and (2) The effectiveness of the compensation method for the lack of the upper body by increasing impact height of the FlexPLI for high-bumper vehicles.
Journal Article

An Ensemble Approach for Model Bias Prediction

2013-04-08
2013-01-1387
Model validation is a process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. In reliability based design, the intended use of the model is to identify an optimal design with the minimum cost function while satisfying all reliability constraints. It is pivotal that computational models should be validated before conducting the reliability based design. This paper presents an ensemble approach for model bias prediction in order to correct predictions of computational models. The basic idea is to first characterize the model bias of computational models, then correct the model prediction by adding the characterized model bias. The ensemble approach is composed of two prediction mechanisms: 1) response surface of model bias, and 2) Copula modeling of a series of relationships between design variables and the model bias, between model prediction and the model bias.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

A Model Validation Approach for Various Design Configurations with Insufficient Experimental Data for Model Accuracy Check

2012-04-16
2012-01-0228
Analytical models (math or computer simulation models) are typically built on the basis of many assumptions and simplifications and hence model prediction could be inaccurate in intended applications. Model validation is thus critical to quantify and improve the degree of accuracy of these models. So far, little work considers model validation for various design configurations so that model prediction is accurate in the intended design space. Furthermore, there is a lack of effective approaches that can be used to quantify model accuracy considering different number of experimental data. To overcome these limitations, objective of this paper is to develop a model validation approach for various design configurations with a reference metric for model accuracy check considering different number of experimental data.
Technical Paper

Research on bus passenger safety in frontal impacts

2001-06-04
2001-06-0210
Guidelines with regard to the body strength of buses have been drawn up in Japan. We now pass to the second step in research to assure the greater safety of bus crews and passengers by launching a study on further reduction of collision injuries to bus occupants. As a way to reduce such passenger injuries, our focus is the optimization of energy absorption, the arrangement of equipment on the passenger seat back, the seat frame construction, mounting and so on. The study was conducted using an experimental method together with FEM computer simulation. The findings from a sled impact test simulating a seat in a bus in a frontal collision are stated as follows. 1.Further consideration should be given to the present conventional ELR two-point seat belt. 2.One way to reduce passenger injury is to optimize the space between seats.
Technical Paper

Development and Validation of the Finite Element Model for the Human Lower Limb of Pedestrians

2000-11-01
2000-01-SC22
An impact test procedure with a legform addressing lower limb injuries in car-pedestrian accidents has been proposed by EEVC/WG17. Although a high frequency of lower limb fractures is observed in recent accident data, this test procedure assesses knee injuries with a focus on trauma to the ligamentous structures. The goal of this study is to establish a methodology to understand injury mechanisms of both ligamentous damages and bone fractures in car-pedestrian accidents. A finite element (FE) model of the human lower limb was developed using PAM-CRASH™. The commercially available H-Dummy™ lower limb model developed by Nihon ESI for a seated position was modified to represent the standing posture of pedestrians. Mechanical properties for both bony structures and knee ligaments were determined from our extensive literature survey, and were carefully implemented in the model considering their strain rate dependency in order to simulate the dynamic response of the lower limb accurately.
Technical Paper

Development and Verification of a Computer Simulation Model of Motorcycle-to-Vehicle Collisions

1999-03-01
1999-01-0719
In order to establish a systematic approach to the study on the injuries sustained by motorcycle riders in accidents and the assessment of protective devices fitted to motorcycles, this research develops a computer simulation model of motorcycle-to-vehicle collision model based on multibody kinematics and dynamics using MADYMO (MAthematical DYnamic MOdel). The effectiveness of the motorcycle-to-vehicle crash model is verified using data of 14 full-scale tests. Comparisons between the simulation peak head acceleration results and the full-scale crash tests data demonstrate a satisfactory agreement between them. The simulation results along with the test data indicate that the leg protectors fitted to the motorcycle can induce harmful consequences to the rider head in some configurations, regardless of their aimed protective effects on the rider’s legs. The findings obtained in this study also provide basis for further improvement of the current model.
Technical Paper

Development of Simulation Model and Pedestrian Dummy

1999-03-01
1999-01-0082
Honda has been studying ways of improving vehicle design to reduce the severity of pedestrian injury. Full-scale test using a pedestrian dummy is an important way to assess the aggressiveness of a vehicle to pedestrians. However, from test results it is concluded that current pedestrian dummies have stiffer characteristics than Post Mortem Human Subjects (PMHS). Also, the dummy kinematics during a collision is different from that of a human body. Because of the limitations of current dummies, it was decided to develop a new pedestrian dummy. At the first stage of the project, a computer simulation model that represented the PMHS tests was developed. Joint characteristics obtained from the simulation model were used in building a new pedestrian dummy which has been named Polar I. The advanced frontal crash test dummy, known as Thor, was selected as the base dummy. Modifications were made for the thorax, spine, knee etc.
Technical Paper

Effects of Road Structure and Buffer Building on Reduction of Road Traffic Noise

1989-11-01
891304
In order to investigate the possibility of noise countermeasures taken on the road and in its surroundings an urban area exposed to high road traffic noise level was taken up as a model, and their effectiveness was estimated by a hybrid simulation method combining a scale model experiment technique and a computer simulation. The case studies of simulation were carried out in the case of improving the road structures, laying the noise barriers, constructing the noise-buffer buildings and so on. As a result, more than 20 dB (A) of road traffic noise reduction were obtained by a modification of the existing surface road to an elevated road.
X