Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Effect of the Head-to-Head Restraint Distance on Occupant Kinematics during Low-Speed Rear-End Crashes

The longitudinal motion of the head, thorax and lumbar spine of two test subjects was measured in low-speed rear-end collisions in order to understand the effect of the head-to-head restraint distance (backset) on the occupant kinematics. The two test subjects were exposed to three rear-end impacts at two crash severities, nominal changes in velocity (ΔV) of 1.11 (low ΔV) and 2.22 m/s (high ΔV). The backset was hypothesized to be an independent variable that would affect the head and neck motion and was set at 0, 5 or 10 cm. The x and z-axis accelerations of the impacted vehicle and the anatomical x and z-axis accelerations of each test subjects’ upper thorax and L5-S1 region were measured and then transformed to an earth-based coordinate system. Head accelerations were measured at the mouth and these accelerations were transformed to an earth-based coordinate system at the head center of gravity (CG).
Journal Article

Biomechanical Response of the Human Face and Corresponding Biofidelity of the FOCUS Headform

In order to evaluate a human surrogate, the human and surrogate response must be defined. The purpose of this study was to evaluate the response of cadaver subjects to blunt impacts to the frontal bone, nasal bone and maxilla. Force-displacement corridors were developed based on the impact response of each region. Variation in the force-displacement response of the cadaver subjects due to the occurrence of fracture and fracture severity was demonstrated. Additionally, impacts were performed at matched locations using the Facial and Ocular CountermeasUre Safety (FOCUS) headform. The FOCUS headform is capable of measuring forces imposed onto facial structures using internal load cells. Based on the tests performed in this study, the nasal region of the FOCUS headform was found to be the most sensitive to impact location. Due to a wide range in geometrical characteristics, the nasal impact response varied significantly, resulting in wide corridors for human response.
Technical Paper

Data Censoring and Parametric Distribution Assignment in the Development of Injury Risk Functions from Biochemical Data

Biomechanical data are often assumed to be doubly censored. In this paper, this assumption is evaluated critically for several previously published sets of data. Injury risk functions are compared using simple logistic regression and using survival analysis with 1) the assumption of doubly censored data and 2) the assumption of right-censored (uninjured specimens) and uncensored (injured) data. It is shown that the injury risk functions that result from these differing assumptions are not similar and that some experiments will require a preliminary assessment of data censoring prior to finalizing the experimental design. Some types of data are obviously doubly censored (e.g., chest deflection as a predictor of rib fracture risk), but many types are not left censored since injury is a force-limiting phenomenon (e.g., axial force as a predictor of tibia fracture). Guidelines for determining the censoring for various types of experiment are presented.
Technical Paper

Human Head and Neck Kinematics After Low Velocity Rear-End Impacts - Understanding “Whiplash”

A second series of low speed rear end crash tests with seven volunteer test subjects have delineated human head/neck dynamics for velocity changes up to 10.9 kph (6.8 mph). Angular and linear sensor data from biteblock arrays were used to compute acceleration resultants for multiple points on the head's sagittal plane. By combining these acceleration fields with film based instantaneous rotation centers, translational and rotational accelerations were defined to form a sequential acceleration history for points on the head. Our findings suggest a mechanism to explain why cervical motion beyond the test subjects' measured voluntary range of motion was never observed in any of a total of 28 human test exposures. Probable “whiplash” injury mechanisms are discussed.
Technical Paper

Comparison of Human and ATD Head Kinematics During Low-Speed Rearend Impacts

The head motions of a human driver and a Hybrid III Anthropometric Test Device (ATD) right front passenger were measured in low-speed rearend impacts (velocity change (ΔV) ≤ 8 kph) with high speed film and accelerometers. Data were analyzed from three crashes with the same human driver (weight similar to ATD) at ΔV's of 3.9, 6.6 and 7.8 kph. The results indicate that the human's and ATD's head have roughly similar basic patterns of motion: a post-impact period where the head is stationary with respect to the earth (Phase I), a period where the head rotates rearward with respect to the vehicle (Phase II), a subsequent period where the head rotates forward with respect to the vehicle (Phase III) and a final period where the head settles into a post-impact rest position (Phase IV). The human's head motion tended to be more complex than the ATD's head motion during Phases II and III.
Technical Paper

Analysis of Human Test Subject Kinematic Responses to Low Velocity Rear End Impacts

The head, neck and trunk kinematic responses of four volunteer test subjects, recorded during a series of experimental low velocity motor vehicle collisions, have been measured and analyzed. Using data obtained from multiple high speed film, video and electronic accelerometer measurements of the test subjects, it was found that the actual kinematic responses of the human head, neck and trunk that occur during low velocity rearend collisions are more complex than previously thought. Our findings indicate that the time-honored description of the cervical “whiplash” response is both incomplete and inaccurate. Although the classic “whiplash” neck response to rearend collisions and the widely accepted hyperextension/hyperflexion cervical injury mechanism have been extensively written and speculated about, there have been little human experimental data available, especially for low velocity collisions.