Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Motion Analysis of the Mandible during Low-Speed, Rear-End Impacts using High-Speed X-rays

2005-11-09
2005-22-0004
There has been much debate over “whiplash”-induced temporomandibular joint (TMJ) dysfunction following low-speed, rear-end automobile collisions. While several authors have reported TMJ injury based on case studies post collision, there has been little biomechanical evidence showing that rear-end impact was the primary cause of such injury. The purpose of this study was to measure the relative translation between the upper and lower incisors in cadavers subjected to low-speed, rear-end impacts. High-speed x-ray images used for this analysis were reported previously for the analysis of cadaveric cervical spine kinematics during low-speed, rear-end impacts. The cadavers were positioned at various seatback angles and body postures, producing an overall picture of various seating scenarios.
Technical Paper

Brain Injury Prediction for Indy Race Car Drivers Using Finite Element Model of the Human Head

2004-11-30
2004-01-3539
The objective of this work was to evaluate a new tool for assessing brain injury. Many race car drivers have suffered concussion and other brain injuries and are in need of ways of evaluating better head protective systems and equipment. Current assessment guidelines such as HIC may not be adequate for assessing all scenarios. Finite element models of the brain have the potential to provide much better injury prediction for any scenario. At a previous Motorsports conference, results of a MADYMO model of a racing car and driver driven by 3-D accelerations recorded in actual crashes were presented. Model results from nine cases, some with concussion and some not, yielded head accelerations that were used to drive the Wayne State University Head Injury Model (WSUHIM). This model consists of over 310,000 elements and is capable of simulating direct and indirect impacts. It has been extensively validated using published cadaveric test data.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints Revisited

2004-11-30
2004-01-3516
At the 2002 MSEC, we presented a paper on the sled test evaluation of racecar head/neck restraint performance (Melvin, et al. 2002). Some individuals objected to the 3 msec clip filtering procedures used to eliminate artifactual spikes in the neck tension data for the HANS® device. As a result, we are presenting the same test data with the spikes left in the neck force data to reassure those individuals that these spikes did not significantly affect the results and conclusions of our original paper. In addition we will add new insights into understanding head/neck restraint performance gained during two more years of testing such systems. This paper re-evaluates the performance of three commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints

2002-12-02
2002-01-3304
Recent action by some racecar sanctioning bodies making head/neck restraint use mandatory for competitors has resulted in a number of methods attempting to provide head/neck restraint. This paper evaluates the performance of a number of commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing. A six-point latch and link racing harness restrained the ATD. The goal of the tests was to examine the performance of the head/neck restraint without the influence of the seat or steering wheel. Three head/neck restraint systems were tested using a sled pulse with a 35 mph (56 km/h) velocity change and 50G peak deceleration. Three tests with three samples of each system were performed to assess repeatability.
Technical Paper

Mathematical Modeling of Crash-Induced Dynamic Loads on Race Car Drivers

2002-12-02
2002-01-3305
A MADYMO model of a racing car and driver was driven by 3-D accelerations recorded in actual crashes. Helmet, belt restraint, and padding characteristics were obtained from dynamics tests. Model results of HIC, head accelerations and neck forces and moments were studied along with driver injuries to provide insight into the efficacy of current injury assessment parameters used with the head and neck of crash test dummies. The results are also used to discuss the kinematics performance of the crash test dummy neck as modeled by the MADYMO version of the Hybrid III midsize male crash test dummy.
X