Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Journal Article

Preforming of a Fuselage C-Shaped Frame Manufactured by Resin Transfer Molding

2013-09-17
2013-01-2214
The need for efficient manufacturing approaches has emerged with the increasing usage of composites for structural components in commercial aviation. Resin Transfer Molding (RTM), a process where a fiber preform is injected with resin into a closed tool, can achieve high fiber content required for structural components as well as improved dimensional accuracy since all surfaces are controlled by a tool surface. Moreover, RTM is well suited for parts that can be standardized throughout the aircraft, such as a fuselage frames and stringers. The objective of this investigation is to develop a preforming approach for a C-Shaped Fuselage frame. Two approaches are proposed: tri-axial braiding and hand lay-up of Non-Crimp Fabrics. The fiber architecture of the basic materials as well as the complete preforms is explained. The necessary preforming operations are detailed. The quality control measurement of fiber orientation and thickness are presented.
Journal Article

Control Charts for Short Production Runs in Aerospace Manufacturing

2013-09-17
2013-01-2248
Statistical process control (SPC) has been extensively used in many different industries including automotive, electronics, and aerospace, among others. SPC tools such as control charts, process capability analysis, sampling inspection, etc., have definitive and powerful impact on quality control and improvement for mass production and similar production systems. In aerospace manufacturing, however, applications of SPC tools are more challenging, especially when these tools are implemented in processes producing products of large sizes with slower production rates. For instance, following a widely accepted rule-of-thumb, about 100 units of products are required in the first phase of implementing a Shewhart type control chart. Once established, it then can be used for process control in the second phase for actual production process monitoring and control.
Technical Paper

Development of Low Cost Fuselage Frames by Resin Transfer Molding

2013-09-17
2013-01-2325
This paper presents work on the development of a low cost fuselage C-frame for aircraft primary structure using a Light Resin Transfer Molding (RTM) process. Compared to labor intensive hand layup prepreg technologies, Light RTM offers some substantial advantages by reducing infrastructure requirements such as hydraulic presses or autoclaves. Compared to Prepreg, Light RTM tooling creates two finished surfaces, which is an advantage during installation due to improved dimensional accuracy. The focus of this work was to develop means of achieving high fiber volume fraction structural frames using low cost tooling and a low volume manufacturing strategy. In this case a three piece Light RTM mold was developed using an internal mandrel. To achieve the strength requirements, a combination of crimped and non-crimped fabrics were selected for the reinforcing preform.
Technical Paper

Efficient 3D Artificial Ice Shapes Simulations with 2D Ice Accretion Codes using a 3-Level Correction

2013-09-17
2013-01-2136
3D ice accretion codes have been available for a few decades but, depending on the specific application, their use may be cumbersome, time consuming and requiring a great deal of expertise in using the code. In particular, simulations of large 3D glaze ice accretions using multiple layers of ice is a very challenging and time consuming task. There are several reasons why 2D icing simulations tools are still widely used in the aircraft industry to produce realistic glaze ice shapes. 2D codes are very fast and robust, with a very short turn-around time. They produce adequate results in areas of the aircraft where 3D effects on airflow or droplets concentration can be neglected. Their use can be extended to other areas of the aircraft if relevant 3D effects can be taken into account. This paper proposes a simulation methodology that includes three levels of corrections to extend the use of 2D icing codes to most of the aircraft surfaces.
Technical Paper

Aircraft Noise Source Identification Using a Microphone Array: Montreal-Trudeau Airport Test Campaign

2013-09-17
2013-01-2129
This paper summarizes the techniques used during a microphone array test campaign performed at Pierre-Elliott-Trudeau Airport in Montréal, Québec (Canada) during the summer of 2012. Emphasis is put on the actual measurement campaign as only a limited amount of analysis has been performed at this stage. An aircraft position tracking tool is presented along with the beamforming algorithms that were used. Over 500 aircraft were recorded during this test. A comparison of known tonal sources associated to a specific aircraft type is made between different airlines in order to evaluate the repeatability of the method.
Technical Paper

IVHM Development and the Big Data Paradigm

2013-09-17
2013-01-2332
This paper discusses the correlation of IVHM (Integrated Vehicle Health Management) as an emerging aerospace discipline and the Big Data paradigm widely discussed in the Information Technology industry. The 4-V model is discussed to qualify a Big Data problem in terms of the volume, variety, velocity and veracity of the data involved. Big Data management allows, for example, correlations to be found to “spot business trends, determine quality of research, prevent diseases, combat crime, and determine real-time roadway traffic conditions”. Examining these two fields side by side is necessary and desirable because innovation is very likely to occur when and where different but correlated domains interface. This paper compares the most significant technical components required for Big Data Analytics and IVHM to work.
Technical Paper

Validation of a Hot-Air Anti-icing Simulation Code

2003-09-08
2003-01-3031
This paper presents CHT2D, a 2D hot air anti-icing simulation tool developed by the Advanced Aerodynamics group of Bombardier Aerospace. The tool has been developed from two main modules: the ice prediction code CANICE and the Navier-Stokes solver NSU2D, which is used to solve the hot air internal flow. A “weak” coupling beween the two modules based on function calls and information exchange has been priviledged. Three validation test cases are presented: for dry air conditions. Predictions from CHT2D agree quite well with the experiments. Preliminary results are also presented for a test case in icing conditions for different heat loads from the anti-icing system, to study the effect on the accumulated ice.
Technical Paper

The Bombardier Flight Test Center - Meeting the Challenge

2000-10-10
2000-01-5502
In 1991, shortly after acquiring Learjet, Bombardier consolidated all flight testing of new aircraft at the Wichita, Kansas facility. Since then, nine new aircraft were certified, and the Flight Test Center grew from 20 dedicated flight test personnel, to nearly 500 dedicated flight test personnel. The Canadian based company in conjunction with several international risk sharing partners, has created a highly dynamic flight test environment, tasking the Flight Test Center with the challenge of bringing a new product to market each year. This rapid growth was centered on supporting three aircraft product lines; Learjet, Canadair, and DeHavilland. New hangars, telemetry, and ground support facilities were built to accommodate the increased flight test demands. The Bombardier Flight Test Center, otherwise known as BFTC, conducts flight test operations on a seven day per week schedule, and in 1999, flew over 5000 flight test hours in development and certification testing.
X