Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

2013-09-17
2013-01-2198
Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Journal Article

Defining Environmental Indicators at Detail Design Stage as Part of an Ecodesign Strategy

2013-09-17
2013-01-2276
Implementing Design for Environment (DfE) into the design process requires a strategic integration. Furthermore, as DfE is continuously evolving, flexible processes need to be implemented. This article focuses on the integration of DfE into an optimization framework with the objective of influencing next-generation aircraft. For this purpose, DfE and Structures groups are developing together a set of new environmental indicators covering all life cycle stages of the product by coupling a list of yes/no questions with an environmental matrix. The following indicators are calculated: Regulation risk, Impact of manufacturing the part, CO2 emissions and Recyclability potential. These indicators will be used as constraints in the multi-disciplinary design optimization (MDO) framework, meaning that the structure will be designed while complying with environmental targets and anticipating future regulation changes.
Journal Article

Reliability Improvement of Lithium Cells Using Laser Welding Process with Design of Experiments

2013-09-17
2013-01-2201
Manufacturing operations introduce unreliability into hardware that is not ordinarily accounted for by reliability design engineering efforts. Inspections and test procedures normally interwoven into fabrication processes are imperfect, and allow defects to escape which later result in field failures. Therefore, if the reliability that is designed and developed into an equipment/system is to be achieved, efforts must be applied during production to insure that reliability is built into the hardware. There are various ways to improve the reliability of a product. These include: Simplification Stress reduction/strength enhancement Design Improvement Using higher quality components Environmental Stress Screening before shipment Process Improvements, etc. This paper concentrates on ‘Manufacturing Process Improvement’ effort through the use of design of experiments, (DOE). Hence, improved levels of reliability can be achieved.
Journal Article

Processing CSeries Aircraft Panels

2013-09-17
2013-01-2149
Bombardier faced new manufacturing process challenges drilling and fastening CSeries* aircraft panels with multi-material stacks of composite (CFRP), titanium and aluminum in which Gemcor responded with a unique, flexible CNC Drivmatic® automatic fastening system, now in production at Bombardier. This joint technical paper is presented by Bombardier, expounding on manufacturing process challenges with the C Series aircraft design requirements and Gemcor presenting a unique solution to automatically fasten CFRP aft fuselage panels and aluminum lithium (Al Li) cockpit panels with the same CNC Drivmatic® system. After installation and preliminary acceptance at Bombardier, the CNC system was further enhanced to automatically fasten the carbon fiber pressure bulkhead dome assembly.
Technical Paper

A Robust Iterative Displacement Inspection Algorithm for Quality Control of Aerospace Non-Rigid Parts without Conformation Jig

2013-09-17
2013-01-2173
Nowadays, optimization of manufacturing and assembly operations requires taking into account the inherent processes variations. Geometric and dimensional metrology of mechanical parts is very crucial for the aerospace industry and contributes greatly to its. In a free-state condition, non-rigid parts (or compliant parts) may have a significant different shape than their nominal geometry (CAD model) due to gravity loads and residual stress. Typically, the quality control of such parts requires a special approach where expensive and specialized fixtures are needed to constrain dedicated and follow the component during the inspection. Inspecting these parts without jig will have significant economic impacts for aerospace industries, reducing delays and the cost of product quality inspection. The Iterative Displacement Inspection (IDI) algorithm has been developed to deal with this problem.
Technical Paper

More About Lightning Induced Effects on Systems in a Composite Aircraft

2013-09-17
2013-01-2156
In order to guarantee systems immunity, lightning induced electromagnetic energy has to be lower than the system's susceptibility threshold. This can be achieved, if the aircraft structure provides a good protection against lightning current as well as against its electromagnetic induced field. Moreover such a structure is also required to constitute a ground plane that guarantees very low common mode impedance between all grounded systems in order to keep them at the same electrical potential. The interaction of lightning with aircraft structure, and the coupling of induced energy with harnesses and systems inside the airframe, is a complex phenomenon, mainly for composite aircraft. Composite structures are either not conductive at all (e.g., fiberglass) or are significantly less conductive than metals (e.g., carbon fiber).
Technical Paper

Aircraft Noise Source Identification Using a Microphone Array: Montreal-Trudeau Airport Test Campaign

2013-09-17
2013-01-2129
This paper summarizes the techniques used during a microphone array test campaign performed at Pierre-Elliott-Trudeau Airport in Montréal, Québec (Canada) during the summer of 2012. Emphasis is put on the actual measurement campaign as only a limited amount of analysis has been performed at this stage. An aircraft position tracking tool is presented along with the beamforming algorithms that were used. Over 500 aircraft were recorded during this test. A comparison of known tonal sources associated to a specific aircraft type is made between different airlines in order to evaluate the repeatability of the method.
X