Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Next Generation High Efficiency Boosted Engine Concept

2024-04-09
2024-01-2094
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature.
Technical Paper

Connected Vehicle Data Applied to Feature Optimization and Customer Experience Improvement

2024-01-08
2023-36-0109
In a recent time, which new vehicle lines comes with a huge number of sensors, control units, embedded technologies, and the complexity of these systems (electronics, electrical and electromechanical parts) increases in an exponential way. Considering these events, the expressive generated data amount grows in the same pace, so, consume, transform, and analyze all these data to better understand the modern customer, their needs and how they use the car features becomes necessary. Through that scenario, connected vehicles developed by Ford Motor Company has been generating opportunities to feature’s improvement and cost reduction based on data analysis. This growing quantity of data might be used to optimize feature systems and help engineering teams to understand how the features have been used and enhance the systems engineering design for new or existing features.
Technical Paper

Development of a 5-Component Diesel Surrogate Chemical Kinetic Mechanism Coupled with a Semi-Detailed Soot Model with Application to Engine Combustion and Emissions Modeling

2023-08-28
2023-24-0030
In the present work, five surrogate components (n-Hexadecane, n-Tetradecane, Heptamethylnonane, Decalin, 1-Methylnaphthalene) are proposed to represent liquid phase of diesel fuel, and another different five surrogate components (n-Decane, n-Heptane, iso-Octane, MCH (methylcyclohexane), Toluene) are proposed to represent vapor phase of diesel fuel. For the vapor phase, a 5-component surrogate chemical kinetic mechanism has been developed and validated. In the mechanism, a recently updated H2/O2/CO/C1 detailed sub-mechanism is adopted for accurately predicting the laminar flame speeds over a wide range of operating conditions, also a recently updated C2-C3 detailed sub-mechanism is used due to its potential benefit on accurate flame propagation simulation. For each of the five diesel vapor surrogate components, a skeletal sub-mechanism, which determines the simulation of ignition delay times, is constructed for species C4-Cn.
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

Generation of Reactive Chemical Species/Radicals through Pilot Fuel Injection in Negative Valve Overlap and Its Effects on Engine Performances

2022-08-30
2022-01-1002
This study investigated the potential of generating reactive chemical species (including radicals) through pilot fuel injection in negative valve overlap for improving the combustion and emissions performances of spark ignition gasoline engines under low load and low speed operating conditions. Several Ford sub-models were used for simulating the physics and chemistry processes of injecting a small amount of fuel in NVO (negative valve overlap). Effects of different NVO degrees and different pilot injection timings, factors for fuel conversion were simulated and investigated. CO and H2 conversions during NVO, CO and H2 amounts before spark timing were used for comparing different schemes.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Technical Paper

Design of an Additive Manufactured Natural Gas Engine with Thermally Conditioned Active Prechamber

2022-06-14
2022-37-0001
In order to decarbonize and lower the overall emissions of the transport sector, immediate and cost-effective powertrain solutions are needed. Natural gas offers the advantage of a direct reduction of carbon dioxide (CO2) emissions due to its better Carbon to Hydrogen ratio (C/H) compared to common fossil fuels, e.g. gasoline or diesel. Moreover, an optimized engine design suiting the advantages of natural gas in knock resistance and lean mixtures keeping in mind the challenges of power density, efficiency and cold start manoeuvres. In the public funded project MethMag (Methane lean combustion engine) a gasoline fired three-cylinder-engine is redesigned based on this change of requirements and benchmarked against the previous gasoline engine.
Technical Paper

Analysis of the Applicability of Water Injection in Combination with an eFuel for Knock Mitigation and Improved Engine Efficiency

2022-06-14
2022-37-0019
The development of future gasoline engines is dominated by the study of new technologies aimed at reducing the engine negative environmental impact and increase its thermal efficiency. One common trend is to develop smaller engines able to operate in stoichiometric conditions across the whole engine map for better efficiency, lower fuel consumption, and optimal conversion rate of the three-way catalyst (TWC). Water injection is one promising technique, as it significantly reduces the engine knock tendency and avoids fuel enrichment for exhaust temperature mitigation at high power operation. With the focus on reducing the carbon footprint of the automotive sector, another vital topic of research is the investigation of new alternative CO2-neutral fuels or so-called eFuels. Several studies have already shown how these new synthetic fuels can be produced by exploiting renewable energy sources and can significantly reduce engine emissions.
Technical Paper

Optimization of Gaussian Process Regression Model for Characterization of In-Vehicle Wet Clutch Behavior

2022-03-29
2022-01-0222
The advancement of Machine-learning (ML) methods enables data-driven creation of Reduced Order Models (ROMs) for automotive components and systems. For example, Gaussian Process Regression (GPR) has emerged as a powerful tool in recent years for building a static ROM as an alternative to a conventional parametric model or a multi-dimensional look-up table. GPR provides a mathematical framework for probabilistically representing complex non-linear behavior. Today, GPR is available in various programing tools and commercial CAE packages. However, the application of GPR is system dependent and often requires careful design considerations such as selection of input features and specification of kernel functions. Hence there is a need for GPR design optimization driven by application requirements. For example, a moving window size for training must be tuned to balance performance and computational efficiency for tracking changing system behavior.
Technical Paper

Reduced Order Metamodel Development Framework for NVH

2022-03-29
2022-01-0219
During the design conception of an automobile, typically low-fidelity physics-based simulations are coupled with engineering judgement to define key architectural components and subsystems which limits the capability to identify NVH issues arising from systems interaction. This translates to non-optimal designs because of unexplored design opportunities and therefore, lost business efficiencies. The sparse design information available during the design conception phase limits the development of representative higher fidelity physics-based simulations. To address that restriction on design optimization opportunities, this paper introduces an alternate approach to develop reduced order predictive models using regression techniques by harnessing historical measurement and simulation data. The concept is illustrated using two driveline NVH phenomenon: axle whine and take-off shudder.
Technical Paper

On the Utility of Ammonia Sensors for Diesel Emissions Control

2022-03-29
2022-01-0549
This paper analyzes the use of an ammonia sensor for feedback control in diesel exhaust systems. We build our case around the specific example of the heavy duty transient cycle, and an exhaust system with an SCR catalyst, a single urea injector and an upstream and downstream NOx sensor. A key component in our analysis is the inclusion of the tolerance of the ammonia sensor. We show that with the current understanding of the sensor tolerance, the ammonia sensor has limited benefit for controls.
Technical Paper

A Novel Optimization Model for Equipment Capacity Planning with Total Number of Assets and Changeover Minimization

2021-06-16
2021-01-5064
Capacity planning is one of the major factors in saving capital and avoiding unnecessary costs in any manufacturing system particularly large original equipment manufacturers (OEMs). However, many manufacturing systems still suffer from huge costs incurred due to a lack of applying a robust capacity planning optimization model. Most of the developed models in literature do not consider real-life situations in manufacturing systems and, hence, are not easy to implement. In this paper, a novel capacity planning optimization model considers various important features of a manufacturing system. The objective function of the model is to minimize the weighted sum of the total number of assets and changeovers. A unique feature of the developed model is the capability of providing the number of additional required assets of each type in case the existing assets are not capable of covering the entire demand.
Journal Article

Automatic Transmission Upshift Control Using a Linearized Reduced-Order Model-Based LQR Approach

2021-04-06
2021-01-0697
Automatic transmission (AT) upshift control performance in terms of shift duration and comfort can be improved during the inertia phase by coordinating the off-going clutch together with oncoming clutch and engine torque. The performance improvement is highest in low gear shifts (i.e., for high ratio steps), which are typically performed with open torque converter. In this paper, a discrete-time, linear quadratic regulation (LQR) is applied during the upshift inertia phase, as it provides an optimal multi-input/multi-output control action with respect to the prescribed cost function. The LQR law is based on a reduced-order drivetrain model, which is applicable to actual transmissions characterized by a limited number of available state measurements. The reduced-order model includes the linearized torque converter model. The shift duration is ensured by precise tracking of a linear-like oncoming clutch slip speed reference profile.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Combustion and Emission Characteristics of SI and HCCI Combustion Fueled with DME and OME

2020-04-14
2020-01-1355
DME has been considered an alternative fuel to diesel fuel with promising benefits because of its high reactivity and volatility. Research shows that an engine fueled with DME will produce zero smoke emissions. However, the storage and the handling of the fuel are underlying difficulties owing to its high vapour pressure (530 kPa @ 20 °C). In lieu, OME1 fuel, a derivate of DME, offers advantages exhibited with DME fuel, all the while being a liquid fuel for engine application. In this work, engine tests are performed to realize the combustion behaviour of DME and OME1 fuel on a single-cylinder research engine with a compression ratio of 9.2:1. The dilution ratio of the mixture is progressively increased in two manners, allowing more air in the cylinder and applying exhaust gas recirculation (EGR). The high reactivity of DME suits the capability to be used in compression ignition combustion whereas OME1 must be supplied with a supplemental spark to initiate the combustion.
Technical Paper

Multi-Objective Restraint System Robustness and Reliability Design Optimization with Advanced Data Analytics

2020-04-14
2020-01-0743
This study deals with passenger side restraint system design for frontal impact and four impact modes are considered in optimization. The objective is to minimize the Relative Risk Score (RRS), defined by the National Highway Traffic Safety Administration (NTHSA)'s New Car Assessment Program (NCAP). At the same time, the design should satisfy various injury criteria including HIC, chest deflection/acceleration, neck tension/compression, etc., which ensures the vehicle meeting or exceeding all Federal Motor Vehicle Safety Standard (FMVSS) No. 208 requirements. The design variables include airbag firing time, airbag vent size, inflator power level, retractor force level. Some of the restraint feature options (e.g., some specific features on/off) are also considered as discrete design variables. Considering the local variability of input variables such as manufacturing tolerances, the robustness and reliability of nominal designs were also taken into account in optimization process.
Technical Paper

Diagnostic Evaluation of Exhaust Gas Recirculation (EGR) System on Gasoline Electric Hybrid Vehicle

2020-04-14
2020-01-0902
Diagnosing the Exhaust Gas Recirculation (EGR) Valve remains one of the most challenging problems in emissions control systems diagnostics. California Air Resources Board (CARB) has started imposing specific requirements on automotive companies since 2011 that required the integration of on-board diagnostics (OBD) monitor for the detection and reporting of this type of control malfunction. In this paper, some methodologies of EGR valve system monitoring are investigated and a novel approach is proposed that shows reliable detection capability compared to the other methods. The proposed method requires certain conditions during deceleration fuel shutoff events to intrusively reactivate the EGR system and determine the obstructed valve condition. The method was evaluated on a 2.5L iVCT engine in an experimental Ford Escape Full Hybrid Electric vehicle. Vehicle results are shown and discussed.
Journal Article

An LQR Approach of Automatic Transmission Upshift Control Including Use of Off-Going Clutch within Inertia Phase

2020-04-14
2020-01-0970
This paper considers using linear quadratic regulation (LQR) for multi-input control of the Automatic Transmission (AT) upshift inertia phase. The considered control inputs include the transmission input/engine torque, oncoming clutch torque, and traditionally not used off-going clutch torque. Use of the off-going clutch has been motivated by discussed Control Trajectory Optimization (CTO) results demonstrating that employing the off-going clutch during the inertia phase along with the main, oncoming clutch can improve the upshift control performance in terms of the shift duration and/or comfort by trading off the transmission efficiency and control simplicity to some extent. The proposed LQR approach provides setting an optimal trade-off between the conflicting criteria related to driving comfort and clutches thermal energy loss.
Journal Article

Axle Efficiency Comparison Method and Spin Loss Benefit of Front Axle Disconnect Systems

2020-04-14
2020-01-1412
There are a variety of test protocols associated with vehicle fuel economy and emissions testing. As a result, a number of test protocols currently exist to measure axle efficiency and spin loss. The intent of this technical paper is to describe a methodology that uses a singular axle efficiency and spin loss procedure. The data can then be used to predict the effects on vehicle FE and GHG for a specific class of vehicles via simulation. An accelerated break-in method using a comparable energy approach has been developed, and can be used to meet the break-in requirements of different vehicle emission test protocols. A “float to equilibrium” sump temperature approach has been used to produce instantaneous efficiency data, which can be used to more accurately predict vehicle FE and GHG, inclusive of Cold CO2. The “Float to Equilibrium” approach and “Fixed Sump Temperature” approach has been compared and discussed.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
X