Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sound Quality Target Development and Cascading for a Tractor

2017-06-05
2017-01-1832
Typical approaches to regulating sound performance of vehicles and products rely upon A-weighted sound pressure level or sound power level. It is well known that these parameters do not provide a complete picture of the customer’s perception of the product and may mislead engineering efforts for product improvement. A leading manufacturer of agricultural equipment set out to implement a process to include sound quality targets in its product engineering cycle. First, meaningful vehicle level targets were set for a tractor by conducting extensive jury evaluation testing and by using objective metrics that represent the customer’s subjective preference for sound. Sensitivity studies (“what-if” games) were then conducted, using the predicted sound quality (SQ) index as validation metric, to define the impact on the SQ performance of different noise components (frequency ranges, tones, transients).
Technical Paper

Use of a Portable Flanged Impedance Tube for Absorber Design and Measurement

2015-06-15
2015-01-2201
Acoustic material testing is becoming increasingly relevant to engineers, designers and manufacturers from a broad range of industries. This paper presents comparisons between material absorption measurements made using the traditional approaches of the reverberation room method and the fixed impedance tube using a sample holder, with those obtained using a lightweight portable flanged impedance tube method. The portable tube allows fast non-destructive in-situ material measurements. It may therefore be used to measure the impact of the installed lay-up (e.g. effects of facing sheets, curvature, material compression, bagging, etc.). Results are presented for both non-locally reacting and locally reacting materials. The flanged tube results are compared directly with in-tube data. They are also corrected for random incidence to allow comparison with the diffuse field reverberation room data.
X