Refine Your Search

Topic

Author

Search Results

Technical Paper

Ambient Emission Measurements from Parked Regenerations of 2007 and 2010 Diesel Particulate Filters

2014-09-30
2014-01-2353
A novel ambient dilution tunnel has been designed, tested and employed to measure the emissions from active parked regenerations of Diesel Particulate Filters (DPFs) for 2007 and 2010 certified heavy duty diesel trucks (HDDTs). The 2007 certified engine had greater regulated emissions than the 2010 certified engine. For a fully loaded 2007 DPF there was an initial period of very large mass emissions, which was then followed by very large number of small particle emissions. The Particle Size Distribution, PSD, was distributed over a large range from 10 nm to 10 μm. The parked regenerations of the 2010 DPF had a much lower initial emission pattern, but the second phase of large numbers of small particles was very similar to the 2007 DPF. The emission results during regeneration have been compared to total emissions from recent engine dynamometer testing of 2007 and 2010 DPFs, and they are much larger.
Technical Paper

Greenhouse Gas Emissions of MY 2010 Advanced Heavy Duty Diesel Engine Measured Over a Cross-Continental Trip of USA

2013-09-08
2013-24-0170
The study was aimed at assessing in-use emissions of a USEPA 2010 emissions-compliant heavy-duty diesel vehicle powered by a model year (MY) 2011 engine using West Virginia University's Transportable Emissions Measurement System (TEMS). The TEMS houses full-scale CVS dilution tunnel and laboratory-grade emissions measurement systems, which are compliant with the Code of Federal Regulation (CFR), Title 40, Part 1065 [1] emissions measurement specifications. One of the specific objectives of the study, and the key topic of this paper, is the quantification of greenhouse gas (GHG) emissions (CO2, N2O and CH4) along with ammonia (NH3) and regulated emissions during real-world operation of a long-haul heavy-duty vehicle, equipped with a diesel particulate filter (DPF) and urea based selective catalytic reduction (SCR) aftertreatment system for PM and NOx reduction, respectively.
Technical Paper

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel and Emissions Control Devices

2009-11-02
2009-01-2722
A novel in situ method was performed for measuring emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. The test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. The exhaust configurations were a stock original equipment manufacturer (OEM) muffler and a Thermo King pDPF™ diesel particulate filter. The two TRU engine operating speeds were high and low, as controlled by the TRU user interface. Test results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine operating speeds. Separately, the application of a Thermo King pDPF reduced regulated emissions, in some cases almost entirely. Finally, the application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine operating speed, but with an increase in oxides of nitrogen (NOx) at low engine speed.
Technical Paper

On-road and In-Laboratory Testing to Demonstrate Effects of ULSD, B20 and B99 on a Retrofit Urea-SCR Aftertreatment System

2009-11-02
2009-01-2733
In order to demonstrate the performance of a retrofitted selective catalytic reduction (SCR) system while also addressing the issues associated with greater use of biodiesel, a 2005 International 9200i tractor owned by the City of Santa Monica was retrofitted with a titania-vanadia-tungsten catalyst and a urea dosing system supplied by Extengine Systems, Inc. This tractor was operated under normal service conditions within the City of Santa Monica refuse collection and transportation fleet. An on-board emissions measurement system supplied by Engine, Fuel, and Emissions Engineering, Inc. was installed on the vehicle; it measured the emissions and fuel use of the vehicle while it operated on ultra-low-sulfur diesel (ULSD), 20% biodiesel (B20), and 99% biodiesel (B99) on consecutive days.
Technical Paper

Regulated Emissions from Heavy Heavy-Duty Diesel Trucks Operating in the South Coast Air Basin

2006-10-16
2006-01-3395
Heavy duty diesel vehicle (HDDV) emissions are known to affect air quality, but few studies have quantified the real-world contribution to the inventory. The objective of this study was to provide data that may enable ambient emissions investigators to m,odel the air quality more accurately. The 25 vehicles reported in this paper are from the first phase of a program to determine representative regulated emissions from Heavy Heavy-Duty Diesel Trucks (HHDDT) operating in Southern California. Emissions data were gathered using a chassis dynamometer, full flow dilution tunnel, and research grade analyzers. The subject program employed two truck test weights and four new test modes (one was idle operation), in addition to the Urban Dynamometer Driving Schedule (UDDS), and the AC50/80 cycle. The reason for such a broad test cycle scope was to determine thoroughly how HHDDT emissions are influenced by operating cycle to improve accuracy of models.
Technical Paper

Emissions Correlation Between a Partial-Flow Diluter and The Full-Flow Constant Volume Sampler (CVS) for a Heavy-Duty Vehicle Under Steady-State Operation

2005-10-24
2005-01-3798
The California Air Resources Board (CARB) examined the performance of a Partial Flow Sampling System (PFSS) against a reference Constant Volume Sampling (CVS) system in measuring emissions from a heavy-duty vehicle (HDV) during dynamometer testing at CARB's Stockton Heavy-Duty Emissions Laboratory (SL). The SL PFSS system is a Sierra BG-2 system that uses flow-based (rather than CO2-based) dilution. The CVS system uses the University of California, Riverside's (UCR) Mobile Emissions Laboratory (MEL). The test vehicle was a 2000 model-year HD tractor powered by a CAT C-15 engine. Exhaust samples were collected simultaneously with the SL and MEL systems and analyzed for total particulate matter (PM), oxides of nitrogen (NOx), carbon dioxide (CO2), carbon monoxide (CO), and total hydrocarbons (THC). The samples were taken during steady-state vehicle operation. Each test mode was repeated seven times in each of two patterns: consecutive and sequential.
Technical Paper

Evaluation of an Enhanced Constant Volume Sampling System and a Bag Mini Diluter for Near Zero Exhaust Emission Testing

2005-04-11
2005-01-0684
As automotive exhaust emission standards have become more stringent and emission control technologies have advanced over the years, accurately measuring the resulting near zero emissions has become increasingly difficult. To improve measurement accuracy, enhancements have been made to the conventional Constant Volume Sampling system (CVS) and to the analytical instrumentation This study included the evaluation of a CVS enhancement. Specifically, a prototype air filter was utilized to enhance the performance of a CVS by reducing non-methane hydrocarbons (NMHC) from dilution air at ambient temperature. Also incorporated into this study was the assessment of a Bag Mini-Dilute (BMD), a relatively new sampling system developed for measuring low-level vehicle emissions. The BMD can be used as an alternative to the CVS and has been approved for emission measurement by the United States Environmental Protection Agency (US EPA) and the California Air Resources Board (ARB.)
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
Technical Paper

Durability of Low-Emissions Small Off-Road Engines

2004-09-27
2004-32-0058
The goal of the project was to reduce tailpipe-out hydrocarbon (HC) plus oxides of nitrogen (NOx) emissions to 50 percent or less of the current California Air Resources Board (CARB) useful life standard of 12 g/hp-hr for Class I engines, or 9 g/hp-hr for Class II engines. Low-emission engines were developed using three-way catalytic converters, passive secondary-air induction (SAI) systems, and in two cases, enleanment. Catalysts were integrated into the engine's mufflers, where feasible, to maintain a compact package. Due to the thermal sensitivity of these engines, carburetor calibrations were left unchanged in four of the six engines, at the stock rich settings. To enable HC oxidation under such rich conditions, a simple passive supplemental air injection system was developed. This system was then tuned to achieve the desired HC+NOx reduction.
Technical Paper

Evaluation of Durable Emission Controls for Large Nonroad SI Engines

2002-05-06
2002-01-1752
The Environmental Protection Agency (EPA) is developing emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board for these engines were derived from emission testing with new engines, with an approximate adjustment applied to take deterioration into account. This paper describes subsequent testing with two LPG-fueled engines that had accumulated several thousand hours of operation with closed-loop control and three-way catalysts. These engines were removed from forklift trucks for characterization and optimization of emission levels. Emissions were measured over a wide range of steady-state points and several transient duty cycles. Optimized emission levels from the aged systems were generally below 1.5 g/hp-hr THC+NOx and 10 g/hp-hr CO.
Technical Paper

Three-Way Catalyst Technology for Off-Road Equipment Engines

1999-09-28
1999-01-3283
A project was conducted by Southwest Research Institute on behalf of the California Air Resources Board and the South Coast Air Quality Management District to demonstrate the technical feasibility of utilizing closed-loop three-way catalyst technology in off-road equipment applications. Five representative engines were selected, and baseline emission-tested using both gasoline and LPG. Emission reduction systems, employing three-way catalyst technology with electronic fuel control, were designed and installed on two of the engines. The engines were then installed in a fork lift and a pump system, and limited durability testing was performed. Results showed that low emission levels, easily meeting CARB's newly adopted large spark-ignited engine emission standards, could be achieved.
Technical Paper

Development of Low-Emissions Small Off-Road Engines

1999-09-28
1999-01-3302
The purpose of this project was to modify existing small off-road engines to meet ARB's originally proposed 1999 emissions standards. A particular point was to show that compliance could be attained without the need to redesign the base engines. Four high-sales volume, ARB-certified 1997 model engines were selected from the following categories: 1) handheld two-stroke engine, 2) handheld four-stroke engine, 3) non-handheld side-valve engine, and 4) a non-handheld overhead-valve engine. Engines were selected, procured, and baseline emission tested using applicable ARB test procedures. Appropriate emission control strategies were then selected and applied to the four engines. Emission reduction strategies used included air/fuel ratio optimization, and catalytic aftertreatment. Following the development of the four emission-controlled engines, final, certification-quality emissions tests were performed. All four engines met ARB's original 1999 Tier 2 emission standards after development.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Comparison of the Exhaust Emissions from California Phase 1 (without oxygenates) and Phase 2 (with oxygenates) Fuel:A Case Study of 11 Passenger Vehicles

1996-05-01
961221
While most studies addressing the fuel effects are based on the Federal Test Procedure (FTP), there are limited studies investigating the fuel effects outside FTP test conditions. In this study, we investigated the differences in exhaust emissions from California Phase 1 to Phase 2 reformulated gasoline over a wide range of speed and ambient temperatures. Eleven catalyst equipped passenger vehicles were tested. The vehicles were comprised of three fuel delivery system configurations, namely, three from carburetor (CARBU), three from throttle body injection (TBI), and five from multi-port fuel injection (MPFI) group. Each vehicle was given 60 tests with the combination of two reformulated fuels: Phase 1 (without oxygenates) and Phase 2 (with oxygenates), three temperatures (50, 75, and 100 °F), and ten speed cycles (average speed ranges from 4 mph to 65 mph).
Technical Paper

Formaldehyde Emission Control Technology for Methanol-Fueled Vehicles: Catalyst Selection

1992-02-01
920092
The use of methanol as a “clean fuel” appears to be a viable approach to reduce air pollution. However, concern has been expressed about potentially high formaldehyde emissions from stoichiometrically operated light-duty vehicles. This paper presents results from an emission test program conducted for the California Air Resources Board (CARB) and the South Coast Air Quality Management District (SCAQMD) to identify and evaluate advanced catalyst technology to reduce formaldehyde emissions without compromising regulated emission control. An earlier paper presented the results of evaluating eighteen different catalyst systems on a hybrid methanol-fueled test vehicle. (1)* This paper discusses the optimization of three of these catalyst systems on four current technology methanol-fueled vehicles. Emission measurements were conducted for formaldehyde, nonmethane organic gases (NMOG), methanol, carbon monoxide, and oxides of nitrogen emissions.
Technical Paper

Overview of On-Board Diagnostic Systems Used on 1991 California Vehicles

1991-10-01
912433
The California Air Resources Board requires that new California vehicles be equipped with on-board diagnostic (OBD) systems. Starting with the 1988 models, these systems were required on new passenger cars, light-duty trucks and medium-duty vehicles equipped with three-way catalysts and feed-back fuel controls. The purpose of the OBD system is to expedite the proper repair of emission-related malfunctions and, thus, reduce vehicle emissions. When malfunctons are detected, a malfunction indicator light (MIL) mounted in the dash panel illuminates cautioning the vehicle operator that a repair is needed. Also, a fault code is stored in the OBD computer memory. When the vehicle is brought to a repair facility, the fault code provides the mechanic with the likely areas of malfunction for repairing the vehicle. After the repair is performed, the fault code is cleared, the MIL is extinguished, and the OBD system will subsequently confirm if the proper repair has been performed.
Technical Paper

California's Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1991-08-01
911669
Emissions from heavy-duty vehicles are a major contributor to California's air quality problems. Emissions from these vehicles account for approximately 30% of the nitrogen oxide and 75% of the particulate matter emissions from the entire on-road vehicle fleet. Additionally, excessive exhaust smoke from in-use heavy-duty diesel vehicles is a target of numerous public complaints. In response to these concerns, California has adopted an in-use Heavy-Duty Vehicle Smoke and Tampering Inspection Program (HDVIP) designed to significantly reduce emissions from these vehicles. Pending promulgation of HDVIP regulations, vehicles falling prescribed test procedures and emission standards will be issued citations. These citations mandate expedient repair of the vehicle and carry civil penalties ranging from $300 to $1800. Failure to clear citations can result in the vehicle being removed from service.
Technical Paper

The Effect of Gasoline Aromatics Content on Exhaust Emissions: A Cooperative Test Program

1990-10-01
902073
A cooperative vehicle exhaust emissions test program was conducted by the California Air Resources Board and Chevron Research and Technology Company. The focus of the program was to determine the effect of aromatics content on nitrogen oxides (NOx) emissions. The program consisted of testing nine vehicles on three different fuels. The fuels ranged in aromatics content from 10% to 30%.* Other fuel properties were held as constant as possible. The tests were conducted in two different laboratories. In addition to the measurement of criteria emissions (hydrocarbons, carbon monoxide, and NOx), some of the hydrocarbon emissions were speciated and a reactivity of the exhaust was calculated. Only slight changes in the exhaust emissions and reactivity were observed for a change in aromatics content from 30% to 10%.
Technical Paper

Trends in Emissions Control Technologies for 1983-1987 Model-Year California-Certified Light-Duty Vehicles

1987-11-01
872164
An analysis of data provided by-vehicle manufacturers during the California emissions certification process has been performed for 1983-1987 model-year light-duty vehicles. The major change in emission control system design was a decrease in the use of secondary air injection which was used on 75% of 1983 vehicles, but only 50% of 1986 and 1987 vehicles. Exhaust gas recirculation was used on 90% of vehicles from 1983-1987. The sales-weighted certification emission levels of gasoline-powered light-duty vehicles were 0.23 g/mile HC, 3.1 g/mile CO, and 0.5 g/mile NOx in 1983. Levels of HC and CO were approximately constant at 0.20 g/mile and 2.7 g/mile, respectively, from 1984-1987 with NOx levels decreasing to 0.4 g/mile for 1987.
X