Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

The Psychological and Statistical Design Method for Co-Creation HMI Applications in the Chinese Automotive Market

2017-03-28
2017-01-0650
The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
Technical Paper

Potentials of Electrical Assist and Variable Geometry Turbocharging System for Heavy-Duty Diesel Engine Downsizing

2017-03-28
2017-01-1035
Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response. This paper assesses the potential benefits of the electrically-assisted turbocharger with VGT to enable heavy-duty diesel engine downsizing.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Journal Article

Obtaining Structure-borne Input for Hybrid FEA/SEA Engine Enclosure Models through a Simplified Transfer Path Analysis

2015-06-15
2015-01-2349
Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Technical Paper

Identification and Reduction of Booming Noise on a Motor Grader

2011-05-17
2011-01-1729
NVH is gaining importance in the quality perception of off-highway machines' performance and operator comfort. Booming noise, a low frequency NVH phenomenon, can be a significant sound issue in a motor grader when it is used under certain operating conditions that cause low frequency excitations to the machine. In order to increase operator comfort by decreasing the noise levels and noise annoyance, both simulation and testing techniques were leveraged to reduce the booming noise of a motor grader. Simultaneous structural/acoustics simulations and experimental modal tests were performed to evaluate this phenomenon. The simulation models were validated using test results and then used to evaluate solutions to this noise problem. Further field tests confirmed the validity of these recommended solutions.
Technical Paper

Moving Toward Establishing More Robust and Systematic Model Development for IC Engines Using Process Informatics

2010-04-12
2010-01-0152
Analyzing the combustion characteristics, engine performance, and emissions pathways of the internal combustion (IC) engine requires management of complex and an increasing quantity of data. With this in mind, effective management to deliver increased knowledge from these data over shorter timescales is a priority for development engineers. This paper describes how this can be achieved by combining conventional engine research methods with the latest developments in process informatics and statistical analysis. Process informatics enables engineers to combine data, instrumental and application models to carry out automated model development including optimization and validation against large data repositories of experimental data.
Technical Paper

Applying Ball Bearings to the Series Turbochargers for the Caterpillar® Heavy-Duty On-Highway Truck Engines

2007-10-30
2007-01-4235
Fuel is a significant portion of the operating cost for an on-highway diesel engine and fuel economy is important to the economics of shipping most goods in North America. Cat® ACERT™ engine technology is no exception. Ball bearings have been applied to the series turbochargers for the Caterpillar heavy-duty, on-highway diesel truck engines in order to reduce mechanical loss for improved efficiency and lower fuel consumption. Over many years of turbocharger development, much effort has been put into improving the aerodynamic efficiency of the compressor and turbine stages. Over the same span of time, the mechanical bearing losses of a turbocharger have not experienced a significant reduction in power consumption. Most turbochargers continue to use conventional hydrodynamic radial and thrust bearings to support the rotor. While these conventional bearings provide a low cost solution, they do create significant mechanical loss.
Technical Paper

CFD Modeling of the Multiphase Flow and Heat Transfer for Piston Gallery Cooling System

2007-10-29
2007-01-4128
Numerical models are used in this study to investigate the oil flow and heat transfer in the piston gallery of a diesel engine. An experiment is set up to validate the numerical models. In the experiment a fixed, but adjustable steel plate is instrumented and pre-heated to a certain temperature. The oil is injected vertically upwards from an underneath injector and impinges on the bottom of the plate. The reduction of the plate temperature is recorded by the thermocouples pre-mounted in the plate. The numerical models are used to predict the temperature history at the thermocouple locations and validated with the experimental data. After the rig model validation, the numerical models are applied to evaluate the oil sloshing and heat transfer in the piston gallery. The piston motion is modeled by a dynamic mesh model, and the oil sloshing is modeled by the VOF (volume of fluid) multiphase model.
Technical Paper

Diesel Engine Electric Turbo Compound Technology

2003-06-23
2003-01-2294
A cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar is aimed at demonstrating electric turbo compound technology on a Class 8 truck engine. The goal is to demonstrate the level of fuel efficiency improvement attainable with an electric turbocompound system. The system consists of a turbocharger with an electric motor/generator integrated into the turbo shaft. The generator extracts surplus power at the turbine, and the electricity it produces is used to run a motor mounted on the engine crankshaft, recovering otherwise wasted energy in the exhaust gases. The electric turbocompound system also provides more control flexibility in that the amount of power extracted can be varied. This allows for control of engine boost and thus air/fuel ratio. The paper presents the status of development of an electric turbocompound system for a Caterpillar heavy-duty on-highway truck engine.
Technical Paper

Nonlinear Finite Element Analysis of Diesel Engine Cylinder Head Gasket Joints

1993-09-01
932456
A nonlinear, three-dimensional finite element analysis of the cylinder head gasket joint has been developed to allow accurate prediction of global and local joint behavior during engine operation. Nonlinear material properties and load cases that simulate full cycle engine operation are the analysis foundation. The three-dimensional, nonlinear, full-cycle simulation accurately predicts cylinder head gasket joint response to assembly, thermal, and cylinder pressure loading. Predictions correlate well with measured engine test data. Analysis results include local pressure distribution and global load splits. Insight into joint loading and an improved understanding of overall joint behavior provide the basis for informed design and development decisions.
Technical Paper

Numerical Simulation of Quenching Process at Caterpillar

1993-04-01
931172
Caterpillar uses heat treatment to enhance the properties of a significant number of parts. Traditional heat treat process optimization is both time consuming and expensive when done by empirical methods. This paper describes a computer simulation of the heat treatment process, developed by Caterpillar, based upon finite element analysis. This approach combines thermal, microstructural, and stress analysis to accurately model material transformation during quenching. Examples are presented to illustrate the program.
X