Refine Your Search

Topic

Author

Search Results

Technical Paper

NOx Measurement and Characterization in a Gaseous Fueled High-Pressure Direct-Injection Engine

2023-10-31
2023-01-1628
Heavy-duty (HD) vehicles are a crucial part of the transportation sector; however, strict governmental regulations will require future HD vehicles to meet even more rigid NOx emission standards than what already exist. The use of natural gas (NG) as the primary fuel in HD vehicles can immediately reduce the NOx emissions through lower flame temperatures as compared to traditional diesel and can serve as a precursor to even less carbon intensive fuels as they become more readily available. Pilot ignited direct injection natural gas (PIDING) engine technology is one example of how NG can be used in HD vehicles while maintaining diesel-like efficiency. However, NOx emissions still need to be mitigated to avoid negative air quality effects. Exhaust gas recirculation (EGR) is known to reduce in-cylinder temperatures and thus reduce in-cylinder NOx emissions in diesel engines, but the effects of EGR are not as well understood in PIDING engines.
Technical Paper

Developing a numerical method for simulating physical and chemical processes that lead to LSPI

2023-09-29
2023-32-0082
Low speed pre-ignition (LSPI) is a limiting phenomenon for several of the technologies being pursued as part of the low carbon agenda. To achieve maximum power density and efficiency engines are being downsized and turbocharged, while Direct- injection technologies are becoming ever more prominent. All changes that increase the propensity of LSPI. The low speed-high load operation envelope is limited due to LSPI. Hydrogen engines are also being explored, however, with such a low minimum enthalpy of ignition, LSPI is a major limitation to thermal efficiency. Several techniques are utilized in this study to investigate physical and physio-chemical aspects of lubricant initiated LSPI. Where possible attempts have been to validate methodologies or directional alignment with published data. The basis of the methodologies used is a validated 1D predictive combustion model of a single cylinder GTDI engine, that was used to provide simulation boundary conditions.
Technical Paper

On-Road CO2 and NOx Emissions for a Heavy-Duty Truck with Hydrogen-Diesel Co-Combustion

2023-04-11
2023-01-0281
Heavy-duty diesel trucking is responsible for 25%-30% of the road transportation CO2 emissions in North America. Retrofitting class-8 trucks with a complementary hydrogen fuelling system makes it possible to co-combust hydrogen and diesel in the existing internal combustion engine (ICE), thus minimizing the costs associated with switching to non-ICE platforms and reducing the barrier for the implementation of low-carbon gaseous fuels such as hydrogen. This retrofitting approach is evaluated based on the exhaust emissions of a converted truck with several thousand kilometres of road data. The heavy-duty truck used here was retrofitted with an air-intake hydrogen injection system, onboard hydrogen storage tanks, and a proprietary hydrogen controller enabling it to operate in hydrogen-diesel co-combustion (HDC) mode.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Effects of Exhaust Gas Hydrogen Addition and Oxygenated Fuel Blends on the Light-Off Performance of a Three-Way Catalyst

2019-12-19
2019-01-2329
A significant amount of harmful emissions pass unreacted through catalytic after-treatment devices for IC engines before the light-off temperature is reached, despite the high conversion efficiency of these systems in fully warm conditions. Further tightening of fleet targets and worldwide emission regulations will make a faster catalyst light-off to meet legislated standards hence reduce the impact of road transport on air quality even more critical. This work investigates the effect of adding hydrogen (H2) at levels up to 2500 ppm into the exhaust gases produced by combustion of various oxygenated C2-, C4- and renewable fuel molecules blended at 20 % wt/wt with gasoline on the light-off performance of a commercially available three-way catalyst (TWC) (0.61 L, Pd/Rh/Pt - 19/5/1, 15g). The study was conducted on a modified naturally aspirated, 1.4 L, four-cylinder, direct-injected, spark-ignition engine.
Technical Paper

Investigating the Combustion and Emissions Characteristics of Biomass-Derived Platform Fuels as Gasoline Extenders in a Single Cylinder Spark-Ignition Engine

2017-10-08
2017-01-2325
The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
Technical Paper

Development of a Research-Oriented Cylinder Head with Modular Injector Mounting and Access for Multiple In-Cylinder Diagnostics

2017-09-04
2017-24-0044
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part I: Late Post Injection

2017-03-28
2017-01-0774
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly non-premixed combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I will investigates the effect of late post injection (LPI) and Part II will study the effect of slightly premixed combustion (SPC) on emission and engine performance. PM reductions and tradeoffs involved with gas late post-injections (LPI) was investigated in a single-cylinder version of a 6-cylinder,15 liter HPDI engine. The post injection contains 10-25% of total fuel mass, and occurs after the main combustion event.
Technical Paper

Effect of Injection Strategies on Emissions from a Pilot-Ignited Direct-Injection Natural-Gas Engine- Part II: Slightly Premixed Combustion

2017-03-28
2017-01-0763
High-pressure direct-injection (HPDI) in heavy duty engines allows a natural gas (NG) engine to maintain diesel-like performance while deriving most of its power from NG. A small diesel pilot injection (5-10% of the fuel energy) is used to ignite the direct injected gas jet. The NG burns in a predominantly mixing-controlled combustion mode which can produce particulate matter (PM). Here we study the effect of injection strategies on emissions from a HPDI engine in two parts. Part-I investigated the effect of late post injection (LPI); the current paper (Part-II) reports on the effects of slightly premixed combustion (SPC) on emission and engine performance. In SPC operation, the diesel injection is delayed, allowing more premixing of the natural gas prior to ignition. PM reductions and tradeoffs involved with gas slightly premixed combustion was investigated in a single-cylinder version of a 6-cylinder, 15 liter HPDI engine.
Technical Paper

Application of an In-Cylinder Local Infrared Absorption Fuel Concentration Sensor in a Diesel-Ignited Dual-Fuel Engine

2016-10-17
2016-01-2310
As global energy demands continue to be met with ever evolving and stricter emissions requirements, natural gas (NG) has become a highly researched alternative to conventional fossil fuels in many industrial sectors. Transportation is one such field that can utilize the benefits of NG as a primary fuel for use in internal combustion engines (ICEs). In the context of heavy-duty on-highway transportation applications, diesel-ignited dual-fuel (DIDF) combustion of NG has been identified as a commercially viable alternative technology. Previous investigations of DIDF have examined the various trends present across the spectrum of DIDF operating space. However, in-cylinder processes are still not well understood and this investigation aims to further understanding in this area. An in-cylinder, local infrared absorption fuel concentration sensor is used to examine in-cylinder processes by comparison with previous optical and thermodynamic studies.
Technical Paper

Natural Gas Partially Stratified Charge Combustion: Extended Analysis of Experimental Validation and Study of Turbulence Impact on Flame Propagation

2016-04-05
2016-01-0596
A Large Eddy Simulation (LES) numerical study of the Partially Stratified Charge (PSC) combustion process is here proposed, carried out with the open Source code OpenFOAM, in a Constant Volume Combustion Chamber (CVCC). The solver has already been validated in previous papers versus experimental data under a limited range of operating conditions. The operating conditions domain for the model validation is extended in this paper, mostly by varying equivalence ratio, to better highlight the influence of turbulence on flame front propagation. Effects of grid sizing are also shown, to better emphasize the trade-off between the level of accuracy of turbulent vortex description, and their impact on the kinematics of flame propagation. Results show the validity of the approach that is evident by comparing numerical and experimental data.
Technical Paper

Effect of Fueling Control Parameters on Combustion and Emissions Characteristics of Diesel-Ignited Methane Dual-Fuel Combustion

2016-04-05
2016-01-0792
Diesel-ignited dual-fuel (DIDF) combustion of natural gas (NG) is a promising strategy to progress the application of NG as a commercially viable compression ignition engine fuel. Port injection of gaseous NG applied in tandem with direct injection of liquid diesel fuel as an ignition source permits a high level of control over cylinder charge preparation, and therefore combustion. Across the broad spectrum of possible combustion conditions in DIDF operation, different fundamental mechanisms are expected to dominate the fuel conversion process. Previous investigations have advanced the understanding of which combustion mechanisms are likely present under certain sets of conditions, permitting the successful modeling of DIDF combustion for particular operating modes. A broader understanding of the transitions between different combustion modes across the spectrum of DIDF warrants further effort.
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Journal Article

Numerical Modelling of the In-Nozzle Flow of a Diesel Injector with Moving Needle during and after the End of a Full Injection Event

2015-09-06
2015-24-2472
The design of a Diesel injector is a key factor in achieving higher engine efficiency. The injector's fuel atomisation characteristics are also critical for minimising toxic emissions such as unburnt Hydrocarbons (HC). However, when developing injection systems, the small dimensions of the nozzle render optical experimental investigations very challenging under realistic engine conditions. Therefore, Computational Fluid Dynamics (CFD) can be used instead. For the present work, transient, Volume Of Fluid (VOF), multiphase simulations of the flow inside and immediately downstream of a real-size multi-hole nozzle were performed, during and after the injection event with a small air chamber coupled to the injector downstream of the nozzle exit. A Reynolds Averaged Navier-Stokes (RANS) approach was used to account for turbulence. Grid dependency studies were performed with 200k-1.5M cells.
Technical Paper

Partially Stratified Charge Natural Gas Combustion: The Impact of Uncertainties on LES Modeling

2015-09-06
2015-24-2409
The aim of this work is to carry out statistical analyses on simulated results obtained from large eddy simulations (LES) to characterize spark-ignited combustion process in a partially premixed natural gas mixture in a constant volume combustion chamber (CVCC). Inhomogeneity in fuel concentration was introduced through a fuel jet comprising up to 0.6 per cent of the total fuel mass, in the vicinity of the spark ignition gap. The numerical data were validated against experimental measurements, in particular, in terms of jet penetration and spread, flame front propagation and overall pressure trace. Perturbations in key flow parameters, namely inlet velocity, initial velocity field, and turbulent kinetic energy, were also introduced to evaluate their influence on the combustion event. A total of 12 simulations were conducted.
Technical Paper

Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays

2015-09-06
2015-24-2463
Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique.
Journal Article

Large Eddy Simulation of an n-Heptane Spray Flame with Dynamic Adaptive Chemistry under Different Oxygen Concentrations

2015-04-14
2015-01-0400
Detailed chemical kinetics is essential for accurate prediction of combustion performance as well as emissions in practical combustion engines. However, implementation of that is challenging. In this work, dynamic adaptive chemistry (DAC) is integrated into large eddy simulations (LES) of an n-heptane spray flame in a constant volume chamber (CVC) with realistic application conditions. DAC accelerates the time integration of the governing ordinary differential equations (ODEs) for chemical kinetics through the use of locally (spatially and temporally) valid skeletal mechanisms. Instantaneous flame structures and global combustion characteristics such as ignition delay time, flame lift-off length (LOL) and emissions are investigated to assess the effect of DAC on LES-DAC results. The study reveals that in LES-DAC simulations, the auto-ignition time and LOL obtain a well agreement with experiment data under different oxygen concentrations.
Technical Paper

Application of Fuel Momentum Measurement Device for Direct Injection Natural Gas Engines

2015-04-14
2015-01-0915
In direct-injection engines, combustion and emission formation is strongly affected by injection quality. Injection quality is related to mass-flow rate shape, momentum rate shape, stability of pulses as well as mechanical and hydraulic delays associated with fuel injection. Finding these injector characteristics aids the interpretation of engine experiments and design of new injection strategies. The goal of this study is to investigate the rate of momentum for the single and post injections for high-pressure direct-injection natural gas injectors. The momentum measurement method has been used before to study momentum rate of injection for single and split injections for diesel sprays. In this paper, a method of momentum measurement for gas injections is developed in order to present transient momentum rate shape during injection timing. In this method, a gas jet impinges perpendicularly on a pressure transducer surface.
Technical Paper

Engine Testing of Dissolved Sodium Borohydride for Diesel Combustion CO2 Scrubbing

2014-10-13
2014-01-2729
Improvements in the efficiency of internal combustion engines and the development of renewable liquid fuels have both been deployed to reduce exhaust emissions of CO2. An additional approach is to scrub CO2 from the combustion gases, and one potential means by which this might be achieved is the reaction of combustions gases with sodium borohydride to form sodium carbonate. This paper presents experimental studies carried out on a modern direct injection diesel engine supplied with a solution of dissolved sodium borohydride so as to investigate the effects of sodium borohydride on combustion and emissions. Sodium borohydride was dissolved in the ether diglyme at concentrations of 0.1 and 2 % (wt/wt), and tested alongside pure diglyme and a reference fossil diesel. The sodium borohydride solutions and pure diglyme were supplied to the fuel injector under an inert atmosphere and tested at a constant injection timing and constant engine indicated mean effective pressure (IMEP).
Technical Paper

Characterization of Flame Development with Hydrous and Anhydrous Ethanol Fuels in a Spark-Ignition Engine with Direct Injection and Port Injection Systems

2014-10-13
2014-01-2623
This paper presents a study of the combustion mechanism of hydrous and anhydrous ethanol in comparison to iso-octane and gasoline fuels in a single-cylinder spark-ignition research engine operated at 1000 rpm with 0.5 bar intake plenum pressure. The engine was equipped with optical access and tests were conducted with both Port Fuel Injection (PFI) and Direct Injection (DI) mixture preparation methods; all tests were conducted at stoichiometric conditions. The results showed that all alcohol fuels, both hydrous and anhydrous, burned faster than iso-octane and gasoline for both PFI and DI operation. The rate of combustion and peak cylinder pressure decreased with water content in ethanol for both modes of mixture preparation. Flame growth data were obtained by high-speed chemiluminescence imaging. These showed similar trends to the mass fraction burned curves obtained by in-cylinder heat release analysis for PFI operation; however, the trend with DI was not as consistent as with PFI.
X