Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Two Dimensional Measurements of Soot Size and Concentration in Diesel Flames by Laser Based Optical Methods

2022-03-29
2022-01-0416
Soot particle size, particle concentration and volume fraction were measured by laser based methods in optically dense, highly turbulent combusting diesel sprays under engine-like conditions. Experiments were done in the Chalmers High Pressure, High Temperature spray rig under isobaric conditions and combusting commercial diesel fuel. Laser Induced Incandescence (LII), Elastic Scattering and Light Extinction were combined quasi-simultaneously to quantify particle characteristics spatially resolved in the middle plane of a combusting spray at two instants after the start of combustion. The influence that fuel injection pressure, gas temperature and gas pressure exert on particle size, particle concentration and volume fraction were studied. Probability density functions of particle size and two-dimensional images of particle diameter, particle concentration and volume fraction concerning instantaneous single-shot cases and average measurements are presented.
Journal Article

Optimization and Evaluation of a Low Temperature Waste Heat Recovery System for a Heavy Duty Engine over a Transient Cycle

2020-09-15
2020-01-2033
Powertrain efficiency is a critical factor in lowering fuel consumption and reducing the emission of greenhouse gases for an internal combustion engine. One method to increase the powertrain efficiency is to recover some of the wasted heat from the engine using a waste heat recovery system e.g. an organic Rankine cycle. Most waste heat recovery systems in use today for combustion engines use the waste heat from the exhaust gases due to the high temperatures and hence, high energy quality. However, the coolant represents a major source of waste heat in the engine that is mostly overlooked due to its lower temperature. This paper studies the potential of using elevated coolant temperatures in internal combustion engines to improve the viability of low temperature waste heat recovery.
Technical Paper

Thermodynamic Cycle and Working Fluid Selection for Waste Heat Recovery in a Heavy Duty Diesel Engine

2018-04-03
2018-01-1371
Thermodynamic power cycles have been shown to provide an excellent method for waste heat recovery (WHR) in internal combustion engines. By capturing and reusing heat that would otherwise be lost to the environment, the efficiency of engines can be increased. This study evaluates the maximum power output of different cycles used for WHR in a heavy duty Diesel engine with a focus on working fluid selection. Typically, only high temperature heat sources are evaluated for WHR in engines, whereas this study also considers the potential of WHR from the coolant. To recover the heat, four types of power cycles were evaluated: the organic Rankine cycle (ORC), transcritical Rankine cycle, trilateral flash cycle, and organic flash cycle. This paper allows for a direct comparison of these cycles by simulating all cycles using the same boundary conditions and working fluids.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

2009-04-20
2009-01-0842
Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Technical Paper

Numerical and Experimental Analysis of the Wall Film Thickness for Diesel Fuel Sprays Impinging on a Temperature-Controlled Wall

2007-04-16
2007-01-0486
Analysis of spray-wall interaction is a major issue in the study of the combustion process in DI diesel engines. Along with spray characteristics, the investigation of impinging sprays and of liquid wall film development is fundamental for predicting the mixture formation. Simulations of these phenomena for diesel sprays need to be validated and improved; nevertheless they can extend and complement experimental measurements. In this paper the wall film thickness for impinging sprays was investigated by evaluating the heat transfer across a temperature controlled wall. In fact, heat transfer is significantly affected by the wall film thickness, and both experiments and simulations were carried out to correlate the wall temperature variations and film height. The numerical simulations were carried out using the STAR-CD and the KIVA-3V, rel. 2, codes.
Technical Paper

Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine

2007-04-16
2007-01-0910
The effects of multiple injections on engine-out emissions from a high-speed direct injection (HSDI) diesel engine were investigated in a series of experiments using a single cylinder research engine. Injection sequences in which the main injection was split into two, three and four pulses were tested and the resulting emissions (NOx, CO HC and particulate matter), torque and cylinder pressures were compared to those obtained with single injections. Together with the number of injections, the effects of varying the dwell time were also investigated. It was found that dividing the main injection into two parts lowered the engine-out particulate and CO emissions and increased fuel efficiency. However, it also resulted in increased NOx emissions.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Technical Paper

A Numerical and Experimental Study of Diesel Fuel Sprays Impinging on a Temperature Controlled Wall

2006-10-16
2006-01-3333
Both spray-wall and spray-spray interactions in direct injection diesel engines have been found to influence the rate of heat release and the formation of emissions. Simulations of these phenomena for diesel sprays need to be validated, and an issue is investigating what kind of fuels can be used in both experiments and spray calculations. The objective of this work is to compare numerical simulations with experimental data of sprays impinging on a temperature controlled wall with respect to spray characteristics and heat transfer. The numerical simulations were made using the STAR-CD and KIVA-3V codes. The CFD simulations accounted for the actual spray chamber geometry and operating conditions used in the experiments. Particular attention was paid to the fuel used for the simulations.
Technical Paper

The Effect of Elliptical Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine

2000-03-06
2000-01-1251
A serie of experiments were carried out to compare the combustion and emissions characteristics of a diesel engine using non-circular (elliptical) and circular shaped fuel injector nozzle holes. Elliptic nozzle holes have the potential to increase air entrainment into the spray, which could lead to decreased emissions from diesel combustion. Previous work [6,7] has shown some interesting results in a passenger car diesel engine and also in a single cylinder engine with optical access. The idea is based on results from investigations of gas jets, where the air entrainment for elliptical jets was increased substantially compared to circular jets. The present series of experiments were carried out to further investigate these effects. The non-circular holes, which were made with an aspect ratio of close to 2:1, have a similar flow rate as the conventional circular holes. Two different angles of the elliptical major axis to the injector centerline were used.
X