Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Correlation Between Euro NCAP Pedestrian Test Results and Injury Severity in Injury Crashes with Pedestrians and Bicyclists in Sweden

2014-11-10
2014-22-0009
Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-to-bicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars.
Technical Paper

Assessment of a Safe Bumper System Using a Pedestrian Lower Limb FE Model

2009-06-09
2009-01-2269
Lower limb injuries are common result of car to pedestrian impacts. A reversible bumper system was developed to reduce the risk of such injuries. In order to improve the protective performance of the bumper system, it was necessary to investigate the efficiency of the bumper system at different impact conditions and design configurations. In this study, the protective performance of the reversible bumper system was assessed by finite element (FE) modeling of lower limb impacts. The FE model of a production car front was developed and validated. The FE model of the reversible bumper system was then developed and replaced the original bumper in the car front model. A human lower limb FE model was used to evaluate the protective performance of the reversible bumper system. The effects of the bumper design parameters on protective performance were investigated by using the statistical method of factorial experiment design.
Technical Paper

A Study on Head Injury Risk in Car-to-Pedestrian Collisions Using FE-Model

2009-06-09
2009-01-2263
Head injury is quite frequently occurred in car-to-pedestrian collisions, which often places an enormous burden to victims and society. To address head protection and understand the head injury mechanisms, in-depth accident investigation and accident reconstructions were conducted. A total of 6 passenger-cars to adult-pedestrian accidents were sampled from the in-depth accident investigation in Changsha China. Accidents were firstly reconstructed by using Multi-bodies (MBS) pedestrian and car models. The head impact conditions such as head impact velocity; position and orientation were calculated from MBS reconstructions, which were then employed to set the initial conditions in the simulation of a head model striking a windshield using Finite Element (FE) head and windshield models. The intracranial pressure and stress distribution of the FE head model were calculated and correlated with the injury outcomes.
Technical Paper

Speed Limit in City Area and Improvement of Vehicle Front Design for Pedestrian Impact Protection-A Computer Simulation Study

2001-06-04
2001-06-0227
This paper presented a part of results from an ongoing project for pedestrian protection, which is carried out at Chalmers University of Technology in Sweden. A validated pedestrian mathematical model was used in this study to simulate vehicle-pedestrian impacts. A large number of simulations have been carried out with various parameters. The injury-related parameters concerning head, chest, pelvis and lower extremities were calculated to evaluate the effect of impact speed and vehicle front structure on the risk of pedestrian injuries. The effect of following vehicle parameters was studied: stiffness of bumper, hood edge, hood top, windscreen frame, and shape of vehicle front structures. A parameter study was conducted by modelling vehicle-pedestrian impacts with various sizes of cars, mini vans, and light trucks. This choice represents the trends of new vehicle fleet and their frequency of involvement in real world accidents.
Technical Paper

Use of Repeated Crash-Tests to Determine Local Longitudinal and Shear Stiffness of the Vehicle Front with Crush

1999-03-01
1999-01-0637
Crash-test-data on local longitudinal and shear stiffness of the vehicle front is needed to estimate impact severity from car deformation in offset or pole impacts, and to predict vehicle acceleration and compartment intrusion in car-to-car crashes. Repeated full frontal crash-tests were carried out with a load-cell barrier to determine the local longitudinal stiffness with increasing crush. Repeated off-set tests were run to determine shear stiffness. Two single high-speed tests (full frontal and offset) were carried out and compared to the repeated tests to determine the rate sensitivity of the front structure. Four repetitions at 33.4 km/h provided equivalent energy absorption to a single 66.7 km/h test, when rebound was considered. Power-train inertial effects were estimated from highspeed tests with and without power-train. Speed effects averaged 2% per [m/s] for crush up to power-train impact, and post-crash measurements were a reasonable estimate of front-structure stiffness.
Technical Paper

Reduction of Head Rotational Motions in Side Impacts Due to the Inflatable Curtain-A Way to Bring Down the Risk of Diffuse Brain Injury

1998-05-31
986167
Diffuse brain injuries are very common in side impacts, accounting for more than half of the injuries to the head. These injuries are often sustained in less severe side impacts. An English investigation has shown that diffuse brain injuries often originate from interior contacts, most frequently with the side window. They are believed to be mainly caused by quick head rotational motions. This paper describes a test method using a Hybrid III dummy head in a wire pendulum. The head impacts a simulated side window or an inflatable device, called the Inflatable Curtain (IC), in front of the window, at different speeds, and at different impact angles. The inflated IC has a thickness of around 70 mm and an internal (over) pressure of 1.5 bar. The head was instrumented with a three axis accelerometer as well as an angular velocity sensor measuring about the vertical (z) axis. The angular acceleration was calculated.
Technical Paper

Computer Simulation of Shearing and Bending Response of the Knee Joint to a Lateral Impact

1995-11-01
952727
The shearing and bending injury mechanisms of the knee joint are recognised as two important injury mechanisms associated with car-pedestrian crash accidents. A study on shearing and bending response of the knee joint to a lateral impact loading was conducted with a 3D multibody system model of the lower extremity. The model consists of foot, leg and thigh with concentrated upper body mass. The body elements are connected by joints, including an anatomical knee joint unit that consists of the femur condyles, tibia condyles and tibia1 intercondylar eminence as well as ligaments. The biomechanical properties of the model were derived from literature data. The model was used to simulate two series of previously performed experiments with lower extremity specimens at lateral impact speeds of 15 and 20 km/h.
Technical Paper

A Test-Rig for Parametric Studies of the Car Seat

1993-03-01
930347
Previous studies have shown that car seat properties play an important role for the occupant protection during various types of accidents. An improved understanding of the interaction between the occupant and the seat is therefore desirable, since this could lead to enhanced protective capacities of future car seats. In this work a test-rig has been developed and constructed, by means of which it is possible to study the response from various seats during frontal collisions. With small modifications the test-rig can be utilized to study other collision directions as well. The rig has been used in a test series, which comprises four car seats in altogether 14 tests. In order to evaluate the interaction between the seat and the dummy, measurements have been made on: the seat frame; the floor connections; the seat belt; the submarine-beam; and on several locations in the dummy.
Technical Paper

Rear-End Collisions - A Study of the Influence of Backrest Properties on Head-Neck Motion using a New Dummy Neck

1993-03-01
930343
Neck injuries in rear-end collisions are usually caused by a swift extension-flexion motion of the neck and mostly occur at low impact velocities (typically less than 20 km/h). Although the injuries are classified as AIS 1, they often lead to permanent disability. The injury risk varies a great deal between different car models. Epidemiological studies show that the effectiveness of passenger-car head-restraints in rear-end collisions generally remains poor. Rear-end collisions were simulated on a crash-sled by means of a Hybrid III dummy with a new neck (Rear Impact Dummy-neck). Seats were chosen from production car models. Differences in head-neck kinematics and kinetics between the different seats were observed at velocity changes of 5 and 12.5 km/h. Comparisons were made with an unmodified Hybrid III. The results show that the head-neck motion is influenced by the stiffness and elasticity of the backrest as well as by the properties of the head-restraint.
X