Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Mapping an Optimum DC-Link Voltage across the Entire SiC-Based EV Drive Regions Using a Synchronous Boost DC-DC Converter

2024-04-09
2024-01-2218
When designing an electric vehicle (EV) traction system, overcoming the issues arising from the variations in the battery voltage due to the state of charge (SoC) is critical, which otherwise can lead to a deterioration of the powertrain energy efficiency and overall drive performance. However, systems are typically documented under fixed voltage and temperature conditions, potentially lacking comprehensive specifications that account for these variations across the entire range of the vehicle operating regions. To tackle this challenge, this paper seeks to adjust an optimal DC-link voltage across the complete range of drive operating conditions by integrating a DC-DC converter into the powertrain, thereby enhancing powertrain efficiency. This involves conducting a comprehensive analysis of power losses in the power electronics of a connected converter-inverter system considering the temperature variations, along with machine losses, accounting for variable DC-link voltages.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Characterization of Gaseous and Particle Emissions of a Direct Injection Hydrogen Engine at Various Operating Conditions

2023-09-29
2023-32-0042
This paper investigates the gaseous and particulate emissions of a hydrogen powered direct injection spark ignition engine. Experiments were performed over different engine speeds and loads and with varying air- fuel ratio, start of injection and intake manifold pressure. An IAG FTIR system was used to detect and measure a variety of gaseous emissions, which include standard emissions such as NOX and unburned hydrocarbons as well as some non-standard emissions such as formaldehyde, formic acid, and ammonia. The particle number concentration and size distribution were measured using a DMS 500 fast particle analyzer from Cambustion. Particle composition was investigated using ICP analysis as well as a Sunset OC/EC analyzer to determine the soot content and the presence of any unburned engine oil. The results show that NOX emissions range between 0.1 g/kWh for a λ of 2.5 and 10 g/kWh λ of 1.5.
Technical Paper

Comparative Assessment of Zero CO2 Powertrain for Light Commercial Vehicles

2023-08-28
2023-24-0150
The transport sector is experiencing a shift to zero-carbon powertrains driven by aggressive international policies aiming to fight climate change. Battery electric vehicles (BEVs) will play the main role in passenger car applications, while diversified solutions are under investigation for the heavy-duty sector. Within this framework, Light Commercial Vehicles (LCVs) impact is not negligible and accountable for about 2.5% of greenhouse gas (GHG) emissions in Europe. In this regard, few LCV comparative assessments on green powertrains are available in the scientific literature and justified by the fact that several factors and limitations should be considered and addressed to define optimal powertrain solutions for specific use cases. The proposed research study deals with a comparative numerical assessment of different zero-carbon powertrain solutions for LCV. BEVs are compared to hydrogen-based fuel cells (FC) and internal combustion engines (ICE) powered vehicles.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

2023-04-11
2023-01-0657
Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance. In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used.
Technical Paper

Methodology Development for Investigation and Optimization of Engine Starts in a HEV Powertrain

2022-03-29
2022-01-0484
The shift toward electrification and limitations in battery electric vehicle technology have led to high demand for hybrid vehicles (HEVs) that utilize a battery and an internal combustion engine (ICE) for propulsion. Although HEVs enable lower fuel consumption and emissions compared to conventional vehicles, they still require combustion of fuels for ICE operation. Thus, emissions from hybrid vehicles are still a major concern. Engine starts are a major source of emissions during any driving event, especially before the three-way catalyst (TWC) reaches its light-off temperature. Since the engine is subjected to multiple starts during most driving events, it is important to mitigate and better understand the impact of these emissions. In this study, experiments were conducted to analyze engine starts in a hybrid powertrain on different experimental setup.
Technical Paper

Two Dimensional Measurements of Soot Size and Concentration in Diesel Flames by Laser Based Optical Methods

2022-03-29
2022-01-0416
Soot particle size, particle concentration and volume fraction were measured by laser based methods in optically dense, highly turbulent combusting diesel sprays under engine-like conditions. Experiments were done in the Chalmers High Pressure, High Temperature spray rig under isobaric conditions and combusting commercial diesel fuel. Laser Induced Incandescence (LII), Elastic Scattering and Light Extinction were combined quasi-simultaneously to quantify particle characteristics spatially resolved in the middle plane of a combusting spray at two instants after the start of combustion. The influence that fuel injection pressure, gas temperature and gas pressure exert on particle size, particle concentration and volume fraction were studied. Probability density functions of particle size and two-dimensional images of particle diameter, particle concentration and volume fraction concerning instantaneous single-shot cases and average measurements are presented.
Technical Paper

Particulates in a GDI Engine and Their Relation to Wall-Film and Mixing Quality

2022-03-29
2022-01-0430
This paper investigates how particulates number PN is influenced by fuel wall-film, liner wetting, and the mixing quality for different start of injection timings (SOI). Both experimental data with PN measurements, endoscope images from a high-speed camera from a single-cylinder engine, and CFD simulations were used for the analysis. Engine geometry was a spray-guided system with 300 bar fuel pressure and with single injections. Data was captured for 2000 rpm / 9 bar IMEPn. The results show that fuel film on the piston was only found to significantly increase PN for over-advanced SOI (in our engine geometry, earlier than -310 CAD). This results in luminescence from diffusion burn on the piston surface, which strongly contributes to PN. For an SOI timing of -310 CAD, fuel film on piston reaches a maximum of 3% of the injected fuel, vaporizes, and no remaining fuel film is found at the time of ignition. Approximately 0.5-1% of the fuel ends up on the liner.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Journal Article

Snow Contamination of Simplified Automotive Bluff Bodies: A Comparison Between Wind Tunnel Experiments and Numerical Modeling

2022-03-29
2022-01-0901
We describe experiments and numerical modeling of snow surface contamination on two simplified automotive bluff bodies: The Ahmed body and a wedge. The purpose was twofold: 1) To obtain well defined experimental results of snow contamination on simple geometries; 2) To propose a numerical modeling approach for snow contamination. The experiments were performed in a climatic wind tunnel using a snow cannon at −15 °C and the results show that the snow accumulation depends on the aerodynamics of the studied bluff bodies. Snow accumulates on surfaces in proximity to the aerodynamic wakes of the bodies and characteristic snow patterns are obtained on side surfaces. The numerical modeling approach consisted of an aerodynamic setup coupled with Lagrangian particle tracking. Particles were determined to adhere or rebound depending on an adhesion model combined with a resuspension criterion.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

A Control-Oriented Spatially Resolved Thermal Model of the Three-Way-Catalyst

2021-04-06
2021-01-0597
The three-way-catalyst (TWC) is an essential part of the exhaust aftertreatment system in spark-ignited powertrains, converting nearly all toxic emissions to harmless gasses. The TWC’s conversion efficiency is significantly temperature-dependent, and cold-starts can be the dominating source of emissions for vehicles with frequent start/stops (e.g. hybrid vehicles). In this paper we develop a thermal TWC model and calibrate it with experimental data. Due to the few number of state variables the model is well suited for fast offline simulation as well as subsequent on-line control, for instance using non-linear state-feedback or explicit MPC. Using the model could allow an on-line controller to more optimally adjust the engine ignition timing, the power in an electric catalyst pre-heater, and/or the power split ratio in a hybrid vehicle when the catalyst is not completely hot.
Technical Paper

Soot Sources in Warm-Up Conditions in a GDI Engine

2021-04-06
2021-01-0622
Gasoline direct injection (GDI) engines usually emit higher levels of particulates in warm-up conditions of a driving cycle. Thus, sources of soot formation in these conditions were investigated by measuring particulate numbers (PN) emitted from a single-cylinder GDI engine and their sizes. The combustion was also visualized using an endoscope connected to a high-speed camera. Engine coolant and oil temperatures were varied between 15 and 90oC to mimic warm-up conditions. In addition, effects of delaying the start of ignition (SOI) on the emissions in these conditions were examined. Coolant and oil temperatures were varied individually to identify which factor has most effect on PN emissions. While coolant temperature strongly influenced PN with cold oil, the oil temperature insignificantly affected PN at low coolant temperature. These findings indicate that PN emissions are heavily dependent on the engine block’s temperature, which is dominated by the coolant.
Technical Paper

Analysis of a Turbocharged Single-Cylinder Two-Stroke SI Engine Concept

2021-04-06
2021-01-0642
Power dense internal combustion engines (ICEs) are interesting candidates for onboard charging devices in different electric powertrain applications where the weight, volume and price of the energy storage components are critical. Single-cylinder naturally aspirated two-stroke spark-ignited (SI) engines are very small and power dense compared to four-stroke SI engines and the installation volume from a single cylinder two-stroke engine can become very interesting in some concepts. During charged conditions, four-stroke engines become more powerful than naturally aspirated two-stroke engines. The performance level of a two-stroke SI engines with a charging system is less well understood since only a limited number of articles have so far been published. However, if charging can be successfully applied to a two-stroke engine, it can become very power dense.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the study is to investigate efficient computational aeroacoustics (CAA) simulation processes to assist the cooling-fan installation design. In this paper we report the current progress of the investigation, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
X