Refine Your Search

Topic

Author

Search Results

Technical Paper

Charging Load Estimation for a Fleet of Autonomous Vehicles

2024-04-09
2024-01-2025
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately.
Technical Paper

Impact of Vehicle-to-Grid (V2G) on Battery Degradation in a Plug-in Hybrid Electric Vehicle

2024-04-09
2024-01-2000
Electric vehicles (EVs) are becoming increasingly recognized as an effective solution in the battle against climate change and reducing greenhouse gas emissions. Lithium-ion batteries have become the standard for energy storage in the automobile industry, widely used in EVs due to their superior characteristics compared to other batteries. The growing popularity of the Vehicle-to-grid (V2G) concept can be attributed to its surplus energy storage capacity, positive environmental impact, and the reliability and stability of the power grid. However, the increased utilization of the battery through these integrations can result in faster degradation and the need for replacement. As batteries are one of the most expensive components of EVs, the decision to deploy an EV in V2G operations may be uncertain due to the concerns of battery degradation from the owner’s perspective.
Technical Paper

Energy-Aware Predictive Control for the Battery Thermal Management System of an Autonomous Off-Road Vehicle

2024-04-09
2024-01-2665
Off-road vehicles are increasingly adopting hybrid and electric powertrains for improved mobility, range, and energy efficiency. However, their cooling systems consume a significant amount of energy, affecting the vehicle’s operating range. This study develops a predictive controller for the battery thermal management system in an autonomous electric tracked off-road vehicle. By analyzing the system dynamics, the controller determines the optimal preview horizon and controller timestep. Sensitivity analysis is conducted to evaluate temperature tracking and energy consumption. Compared to an optimal controller without preview, the predictive controller reduces energy consumption by 55%. Additionally, a relationship between cooling system energy consumption and battery size is established. The impact of the preview horizon on energy consumption is examined, and a tradeoff between computational cost and optimality is identified.
Technical Paper

Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

2024-04-09
2024-01-2790
Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network.
Technical Paper

Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine

2023-10-31
2023-01-1617
Thermal barrier coatings (TBCs) have long been studied as a potential pathway to achieve higher thermal efficiency in spark ignition engines. Researchers have studied coatings with different thicknesses and thermophysical properties to counteract the volumetric efficiency penalty associated with TBCs in spark ignition. To achieve an efficiency benefit with minimal charge heating during the intake stroke, low thermal inertia coatings characterized by their larger temperature swings are required. To study the impact of low thermal inertia coatings in spark ignition, coatings were applied to the cylinder head, piston crown, intake and exhaust valve faces, and intake and exhaust valve backsides. Tier III EEE E10 certification gasoline was used to keep the experiments relevant to the present on-road vehicles. This study is aimed at analyzing durability of the coatings as well as efficiency and emissions improvements.
Technical Paper

GT-Suite Modeling of Thermal Barrier Coatings in a Multi-Cylinder Turbocharged DISI Engine for Catalyst Light-Off Delay Improvement

2023-10-31
2023-01-1602
Catalytic converters, which are commonly used for after-treatment in SI engines, exhibit poor performance at lower temperatures. This is one of the main reasons that tailpipe emissions drastically increase during cold-start periods. Thermal inertia of turbocharger casing prolongs the catalyst warm-up time. Exhaust enthalpy management becomes crucial for a turbocharged direct injection spark ignition (DISI) engine during cold-start periods to quickly heat the catalyst and minimize cold-start emissions. Thermal barrier coatings (TBCs), because of their low thermal inertia, reach higher surface temperatures faster than metal walls, thereby blocking heat transfer and saving enthalpy for the catalyst. The TBCs applied on surfaces that exchange heat with exhaust gases can increase the enthalpy available for the catalyst warm-up.
Technical Paper

Reinforcement Learning Based Fast Charging of Electric Vehicle Battery Packs

2023-10-31
2023-01-1681
Range anxiety and lack of adequate access to fast charging are proving to be important impediments to electric vehicle (EV) adoption. While many techniques to fast charging EV batteries (model-based & model-free) have been developed, they have focused on a single Lithium-ion cell. Extensions to battery packs are scarce, often considering simplified architectures (e.g., series-connected) for ease of modeling. Computational considerations have also restricted fast-charging simulations to small battery packs, e.g., four cells (for both series and parallel connected cells). Hence, in this paper, we pursue a model-free approach based on reinforcement learning (RL) to fast charge a large battery pack (comprising 444 cells). Each cell is characterized by an equivalent circuit model coupled with a second-order lumped thermal model to simulate the battery behavior. After training the underlying RL, the developed model will be straightforward to implement with low computational complexity.
Technical Paper

A Reconfigurable Battery Topology for Cell Balancing

2023-10-31
2023-01-1683
This paper proposes a novel reconfigurable battery balancing topology and reinforcement learning-based intelligent balancing management system. The different degradations cause a significant loss of battery pack available capacity, as the pack power output relies on the weakest cell due to the relevant physical requirements. To handle this capacity drop issue, a reconfigurable battery topology is adopted to improve the usability of the heterogeneous battery. There are some existing battery reconfigurable topologies in the literature. However, these studies rely on the limited options of topology designs, and there is a lack of study on the reconfigurability of these designs and other possible new designs. Also, it is rare to find an optimal management system for the reconfigurable battery topology. To fill these research gaps, this paper explores existing battery reconfigurable topology designs and proposes a new reconfigurable topology for battery balancing.
Technical Paper

A Prognostic Based Control Framework for Hybrid Electric Vehicles

2022-03-29
2022-01-0352
Electrified transportation has received significant interest recently because of sustainable and clean energy goals. However, the degradation of electrical components such as energy storage systems raises system reliability and economic concerns. In this paper, a prognostic-based control strategy is proposed for hybrid electric vehicles (HEVs) to abate the degradation of energy systems. Degradation forecasting models of electrical components are developed to predict their degradation paths. The predicted results are then used to control HEVs in order to reduce the degradation of components.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Journal Article

Virtual Evaluation of Deep Learning Techniques for Vision-Based Trajectory Tracking

2022-03-29
2022-01-0369
Artificial intelligence (AI) enhanced control system deployments are emerging as a viable substitute to more traditional control system. In particular, deep learning techniques offer an alternate approach to tune the ever increasing sets of control system parameters to extract performance. However, the systematic verification and validation (to establish the reliability and robustness) of deep learning based controllers in actual deployments remains a challenge. This is exacerbated by the need to evaluate and optimize control systems embedded within an operational environment (with its own sets of additional unknown or uncertain parameters). Existing literature comparisons of deep learning against traditional controllers, where they may exist, do not offer structured approaches to comparative performance evaluation and improvement. It is also crucial to develop a standardized controlled test environment within which various controllers are evaluated against a common metric.
Technical Paper

A Multi-Objective Power Component Optimal Sizing Model for Battery Electric Vehicles

2021-04-06
2021-01-0724
With recent advances in electric vehicles, there is a plethora of powertrain topologies and components available in the market. Thus, the performance of electric vehicles is highly sensitive to the choice of various powertrain components. This paper presents a multi-objective optimization model that can optimally select component sizes for batteries, supercapacitors, and motors in regular passenger battery-electric vehicles (BEVs). The BEV topology presented here is a hybrid BEV which consists of both a battery pack and a supercapacitor bank. Focus is placed on optimal selection of the battery pack, motor, and supercapacitor combination, from a set of commercially available options, that minimizes the capital cost of the selected power components, the fuel cost over the vehicle lifespan, and the 0-60 mph acceleration time. Available batteries, supercapacitors, and motors are from a market survey.
Journal Article

Automatic Formal Verification of SysML State Machine Diagrams for Vehicular Control Systems

2021-04-06
2021-01-0260
Vehicular control systems are characterized with numerous complex interactions with a steady rise of autonomous functions, which makes it more challenging for designers and safety engineers to identify unexpected failures. These systems tend to be highly integrated and exhibit features like concurrency for which traditional verification and validation techniques (i.e. testing and simulation) are insufficient to provide rigorous and complete assessment. Model Checking, a well-known formal verification technique, can be used to rigorously prove the correctness of such systems according to design Requirements. In particular, Model Checking is a method for formally verifying finite-state concurrent systems. Specifications about the system are expressed as temporal logic formulas, and efficient symbolic algorithms are used to traverse the model defined by the system and check if the specification holds or not.
Journal Article

Electro-Thermal Control on Power Electronic Converters: A Finite Control Set Model Predictive Control Approach

2021-04-06
2021-01-0200
With the increasing attention towards electric vehicles (EV), power electronics technology has become more prominent on vehicular systems. EV requires compact energy conversion and control technology to improve system efficiency and optimize the sizing of power components. Therefore, it is important to reduce thermal losses, while supplying an adequate amount of power to different EV devices. Silicon carbide (SiC)-based power semiconductors provide performance improvements such as lower power losses, higher junction temperature and higher switching frequency compared to the conventional silicon (Si)-based switching devices. High-frequency switching is preferred for power converters to minimize the necessity of passive filters; however, high-frequency switching causes additional thermal stress on semiconductor switches due to the increase in switching losses. The degradation of switching devices in power converters are primarily related to the junction temperature.
Technical Paper

Machine Learning Based Optimal Energy Storage Devices Selection Assistance for Vehicle Propulsion Systems

2020-04-14
2020-01-0748
This study investigates the use of machine learning methods for the selection of energy storage devices in military electrified vehicles. Powertrain electrification relies on proper selection of energy storage devices, in terms of chemistry, size, energy density, and power density, etc. Military vehicles largely vary in terms of weight, acceleration requirements, operating road environment, mission, etc. This study aims to assist the energy storage device selection for military vehicles using the data-drive approach. We use Machine Learning models to extract relationships between vehicle characteristics and requirements and the corresponding energy storage devices. After the training, the machine learning models can predict the ideal energy storage devices given the target vehicles design parameters as inputs. The predicted ideal energy storage devices can be treated as the initial design and modifications to that are made based on the validation results.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

A Review of Spark-Assisted Compression Ignition (SACI) Research in the Context of Realizing Production Control Strategies

2019-09-09
2019-24-0027
This paper seeks to identify key input parameters needed to achieve a production-viable control strategy for spark-assisted compression ignition (SACI) engines. SACI is a combustion strategy that uses a spark plug to initiate a deflagration flame that generates sufficient ignition energy to trigger autoignition in the remaining charge. The flame propagation phase limits the rate of cylinder pressure rise, while autoignition rapidly completes combustion. High dilution within the autoignited charge is generally required to maintain reaction rates feasible for production. However, this high dilution may not be reliably ignited by the spark plug. These competing constraints demand novel mixture preparation strategies for SACI to be feasible in production. SACI with charge stratification has demonstrated sufficiently stable flame propagation to reliably trigger autoignition across much of the engine operating map.
Technical Paper

Use of Machine Learning for Real-Time Non-Linear Model Predictive Engine Control

2019-04-02
2019-01-1289
Non-linear model predictive engine control (nMPC) systems have the ability to reduce calibration effort while improving transient engine response. The main drawback of nMPC for engine control is the computational power required to realize real-time operation. Most of this computational power is spent linearizing the non-linear plant model at each time step. Additionally, the effectiveness of the nMPC system relies heavily on the accuracy of the model(s) used to predict the future system behavior, which can be difficult to model physically. This paper introduces a hybrid modeling approach for internal combustion engines that combines physics-based and machine learning techniques to generate accurate models that can be linearized with low computational power. This approach preserves the generalization and robustness of physics-based models, while maintaining high accuracy of data-driven models. Advantages of applying the proposed model with nMPC are discussed.
Technical Paper

Knock Thresholds and Stochastic Performance Predictions: An Experimental Validation Study

2019-04-02
2019-01-1168
Knock control systems are fundamentally stochastic, regulating some aspect of the distribution from which observed knock intensities are drawn. Typically a simple threshold is applied, and the controller regulates the resultant knock event rate. Recent work suggests that the choice of threshold can have a significant impact on closed loop performance, but to date such studies have been performed only in simulation. Rigorous assessment of closed loop performance is also a challenging topic in its own right because response trajectories depend on the random arrival of knock events. The results therefore vary from one experiment to the next, even under identical operating conditions. To address this issue, stochastic simulation methods have been developed which aim to predict the expected statistics of the closed loop response, but again these have not been validated experimentally.
Technical Paper

Detection of Presence and Posture of Vehicle Occupants Using a Capacitance Sensing Mat

2019-04-02
2019-01-1232
Capacitance sensing is the technology that detects the presence of nearby objects by measuring the change in capacitance. A change in capacitance is triggered either by a change in dielectric constant, area of overlap or distance of separation between the electrodes of the capacitor. It is a technology that finds wide use in applications such as touch screens, proximity sensing etc. Drawing motivation from such applications, this paper investigates how capacitive sensing can be employed to detect the presence and posture of occupants inside vehicles. Compared to existing solutions, the proposed approach is low-cost, easy to deploy and highly efficient. The sensing system consists of a capacitance-sensing mat that is embedded with copper foils and an associated sensing circuitry. Inside the mat the foils are arranged in rows and columns to form several touch-nodes across the surface of the mat.
X