Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Benchmarking of Neural Network Methodologies for Piston Thermal Model Calibration

2024-04-09
2024-01-2598
Design of internal combustion (IC) engine pistons is dependent on accurate prediction of the temperature field in the component. Experimental temperature measurements can be taken but are costly and typically limited to a few select locations. High-fidelity computer simulations can be used to predict the temperature at any number of locations within the model, but the models must be calibrated for the predictions to be accurate. The largest barrier to calibration of piston thermal models is estimating the backside boundary conditions, as there is not much literature available for these boundary conditions. Bayesian model calibration is a common choice for model calibration in literature, but little research is available applying this method to piston thermal models. Neural networks have been shown in literature to be effective for calibration of piston thermal models.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

2024-04-09
2024-01-2688
A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
Technical Paper

Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

2024-04-09
2024-01-2790
Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network.
Technical Paper

The Influence of Cooling Air-Path Restrictions on Fuel Consumption of a Series Hybrid Electric Off-Road Tracked Vehicle

2023-10-31
2023-01-1611
Electrification of off-road vehicle powertrains can increase mobility, improve energy efficiency, and enable new utility by providing high amounts of electrical power for auxiliary devices. These vehicles often operate in extreme temperature conditions at low ground speeds and high power levels while also having significant cooling airpath restrictions. The restrictions are a consequence of having grilles and/or louvers in the airpath to prevent damage from the operating environment. Moreover, the maximum operating temperatures for high voltage electrical components, like batteries, motors, and power-electronics, can be significantly lower than those of the internal combustion engine. Rejecting heat at a lower temperature gradient requires higher flow rates of air for effective heat exchange to the operating environment at extreme temperature conditions.
Technical Paper

Experimental Study of Low Thermal Inertia Thermal Barrier Coating in a Spark Ignited Multicylinder Production Engine

2023-10-31
2023-01-1617
Thermal barrier coatings (TBCs) have long been studied as a potential pathway to achieve higher thermal efficiency in spark ignition engines. Researchers have studied coatings with different thicknesses and thermophysical properties to counteract the volumetric efficiency penalty associated with TBCs in spark ignition. To achieve an efficiency benefit with minimal charge heating during the intake stroke, low thermal inertia coatings characterized by their larger temperature swings are required. To study the impact of low thermal inertia coatings in spark ignition, coatings were applied to the cylinder head, piston crown, intake and exhaust valve faces, and intake and exhaust valve backsides. Tier III EEE E10 certification gasoline was used to keep the experiments relevant to the present on-road vehicles. This study is aimed at analyzing durability of the coatings as well as efficiency and emissions improvements.
Technical Paper

Experimental Comparison of a Rotary Valvetrain on the Performance and Emissions of a Light Duty Spark Ignition Engine

2023-10-31
2023-01-1613
Rotary valve technology can provide increased flow area and higher discharge coefficients than conventional poppet valves for internal combustion engines. This increase in intake charging efficiency can improve the power density of four-stroke internal combustion engines, particularly at high engine speeds, where flow is choked through conventional poppet valves. In this work, the valvetrain of a light duty single cylinder spark ignition engine was replaced with a rotary valve train. The impact of this valvetrain conversion on performance and emissions was evaluated by comparing spark timing sweeps with lambda ranging from 0.8 to 1.1 at wide open throttle. The results indicated that the rotary valvetrain increased the amount of air trapped at intake valve closing and resulted in a significantly faster burn duration than the conventional valvetrain.
Technical Paper

GT-Suite Modeling of Thermal Barrier Coatings in a Multi-Cylinder Turbocharged DISI Engine for Catalyst Light-Off Delay Improvement

2023-10-31
2023-01-1602
Catalytic converters, which are commonly used for after-treatment in SI engines, exhibit poor performance at lower temperatures. This is one of the main reasons that tailpipe emissions drastically increase during cold-start periods. Thermal inertia of turbocharger casing prolongs the catalyst warm-up time. Exhaust enthalpy management becomes crucial for a turbocharged direct injection spark ignition (DISI) engine during cold-start periods to quickly heat the catalyst and minimize cold-start emissions. Thermal barrier coatings (TBCs), because of their low thermal inertia, reach higher surface temperatures faster than metal walls, thereby blocking heat transfer and saving enthalpy for the catalyst. The TBCs applied on surfaces that exchange heat with exhaust gases can increase the enthalpy available for the catalyst warm-up.
Technical Paper

Impact of Active Cooling on the Thermal Management of 3-Level NPC Converter for Hybrid Electric Vehicle Application

2023-10-31
2023-01-1684
The application of power electronic converters (PEC) in electric vehicles (EVs) has increased immensely as they provide enhanced controllability and flexibility to these vehicles. Accordingly, the interest in developing innovative and sustainable technologies to ensure safe and reliable operation of PECs has also risen. One of the most difficult challenges experienced during the development of reliable PECs is the design of proper thermal management systems for controlling the junction temperature and reducing the thermal cycling of power semiconductors. The addition of Active Thermal Control (ATC) can mitigate these concerns. Moreover, the performance of the thermal management system can be enhanced further by the integration of active cooling methods. An active cooling system consumes external energy for circulating cooling air or liquid within the PECs.
Technical Paper

Analysis of a Split Injection Strategy to Enable High Load, High Compression Ratio Spark Ignition with Hydrous Ethanol

2023-10-31
2023-01-1616
High compression ratios are critical to increasing the efficiency of spark ignition engines, but the trend in downsized and down sped configurations has brought attention to the nominally low compression ratios used to avoid knock. Knock is an abnormal combustion event defined by the acoustic sound caused by end-gas auto-ignition ahead of the flame front. In order to avoid engine-damaging levels of knock, low compression ratios and retarded combustion phasing at high loads are used, both of which lower efficiency. Low carbon alternative fuels such as ethanol or water-based alcohol fuels combine strong chemical auto-ignition resistance with large charge cooling characteristics that can suppress knock and enable optimal combustion phasing, thus allowing an increase in the compression ratio.
Technical Paper

Effects of Injector Included Angle on Low-Load Low Temperature Gasoline Combustion Using LES

2023-04-11
2023-01-0270
A novel advanced combustion strategy that employs the kinetically controlled compression ignition of gasoline whose autoignition is sensitive to fuel concentration is termed Low Temperature Gasoline Combustion. The LTGC method can achieve high thermal efficiency with a commercially available fuel while generating ultra-low soot and NOx emissions relative to the conventional combustion modes. At high loads, a double direct injection (D-DI) strategy is used where the first injection generates a background premixed charge while a second compression stroke injection controls the level of fuel stratification on a cycle-to-cycle basis to manage the heat release rates. With lower loads, this combustion performance of this D-DI strategy decreases as the background charge becomes increasingly lean. Instead, a single direct injection (S-DI) is used at lower loads to maintain an adequate combustion efficiency.
Technical Paper

Traffic Safety Improvement through Evaluation of Driver Behavior – An Initial Step Towards Vehicle Assessment of Human Operators

2023-04-11
2023-01-0569
In the United States and worldwide, 38,824 and 1.35 million people were killed in vehicle crashes during 2020. These statistics are tragic and indicative of an on-going public health crisis centered on automobiles and other ground transportation solutions. Although the long-term US vehicle fatality rate is slowly declining, it continues to be elevated compared to European countries. The introduction of vehicle safety systems and re-designed roadways has improved survivability and driving environment, but driver behavior has not been fully addressed. A non-confrontational approach is the evaluation of driver behavior using onboard sensors and computer algorithms to determine the vehicle’s “mistrust” level of the given operator and the safety of the individual operating the vehicle. This is an inversion of the classic human-machine trust paradigm in which the human evaluates whether the machine can safely operate in an automated fashion.
Technical Paper

Evaluating Drivers’ Understanding of Warning Symbols Presented on In-Vehicle Digital Displays Using a Driving Simulator

2023-04-11
2023-01-0790
Since 1989, ISO has published procedures for developing and testing public information symbols (ISO 9186), while the SAE standard for in-vehicle icon comprehension testing (SAE J2830) was first published in 2008. Neither testing method was designed to evaluate the comprehension of symbols in modern vehicles that offer digital instrument cluster interfaces that afford new levels of flexibility to further improve drivers’ understanding of symbols. Using a driving simulator equipped with an eye tracker, this study investigated drivers’ understanding of six automotive symbols presented on in-vehicle displays. Participants included 24 teens, 24 adults, and 24 senior drivers. Symbols were presented in a symbol-only, symbol + short text descriptions, and symbol + long text description conditions. Participants’ symbol comprehension, driving performance, reaction times, and eye glance times were measured.
Technical Paper

Split Injection of High-Ethanol Content Fuels to Reduce Knock in Spark Ignition

2023-04-11
2023-01-0326
Spark ignition engines have low tailpipe criteria pollutants due to their stoichiometric operation and three-way catalysis and are highly controllable. However, one of their main drawbacks is that the compression ratio is low due to knock, which incurs an efficiency penalty. With a global push towards low-lifecycle-carbon renewable fuels, high-octane alternatives to gasoline such as ethanol are attractive options as fuels for spark ignition engines. Under premixed spark ignition operating conditions, ethanol can enable higher compression ratios than regular-grade gasoline due to its high octane number. The high cooling potential of high-ethanol content gasolines, like E85, or of ethanol-water blends, like hydrous ethanol, can be leveraged to further reduce knock and enable higher compression ratios as well as further downsizing and boosting to reduce frictional and throttling losses.
Technical Paper

Experimental Comparison of Diesel and Wet Ethanol on an Opposed-Piston Two Stroke (OP2S) Engine

2023-04-11
2023-01-0335
Renewable fuels, such as the alcohols, ammonia, and hydrogen, have a high autoignition resistance. Therefore, to enable these fuels in compression ignition, some modifications to existing engine architectures is required, including increasing compression ratio, adding insulation, and/or using hot internal residuals. The opposed-piston two-stroke (OP2S) engine architecture is unique in that, unlike conventional four-stroke engines, the OP2S can control the amount of trapped residuals over a wide range through its scavenging process. As such, the OP2S engine architecture is well suited to achieve compression ignition of high autoignition resistance fuels. In this work, compression ignition with wet ethanol 80 (80% ethanol, 20% water by mass) on a 3-cylinder OP2S engine is experimentally demonstrated. A load sweep is performed from idle to nearly full load of the engine, with comparisons made to diesel at each operating condition.
Journal Article

Development and Evaluation of Comfort Assessment Approaches for Passengers in Autonomous Vehicles

2023-04-11
2023-01-0788
Passenger comfort is a critical factor in user acceptance of autonomous vehicles (AVs). Despite existing methods for passenger comfort assessment, new approaches to assessing passenger comfort in AVs may be valuable to the automotive industry. In this paper, continuous pressing-based and discrete smartphone-based approaches for comfort assessment were designed and implemented in a user study. Participants used the two approaches to evaluate their comfort levels in an experimental study based on a high-fidelity autonomous driving simulator. Performances of the two approaches in assessing comfort levels were analyzed and compared. In general, the discrete approach showed better measurement repeatability and lower measurement bias than the continuous approach. The performance gap of the continuous approach could be reduced with proper post-processing measures. Discussions on the potential uses of the approaches were also raised.
Technical Paper

What Makes Passengers Uncomfortable In Vehicles Today? An Exploratory Study of Current Factors that May Influence Acceptance of Future Autonomous Vehicles

2023-04-11
2023-01-0675
Autonomous vehicles have the potential to transform lives by providing transportation to a wider range of users. However, with this new method of transportation, user acceptance and comfort are critical for widespread adoption. This exploratory study aims to investigate what makes passengers uncomfortable in existing vehicles to inform the design of future autonomous vehicles. In order to predict what may impact user acceptance for a diverse rider population for future autonomous vehicles, it is important to understand what makes a broad range of passengers uncomfortable today. In this study, interviews were conducted for a total of 75 participants from three diverse groups, including 20 automotive engineering graduate students who are building an autonomous concept vehicle, 21 non-technical adults, and 34 senior citizens. The results revealed both topics which made different groups of passengers uncomfortable as well as how these varied between the groups.
Technical Paper

Impact of Thermal Barrier Coatings on Intake and Exhaust Valves in a Spark Ignition Engine

2023-04-11
2023-01-0243
Spark ignition knock is highly sensitive to changes in intake air temperature. Hot surface temperatures due to ceramic thermal barrier coatings increase knock propensity by elevating the incoming air temperature, thus mitigating the positive impacts of low heat transfer losses by requiring spark retard to avoid knock. Low thermal inertia coatings (i.e. Temperature swing coatings) have been proposed as a means of reducing or eliminating the open cycle charge heating penalty of traditional TBCs through a combination of low thermal conductivity and low volumetric heat capacity materials. However, in order to achieve a meaningful gain in efficiency, a significant fraction of the combustion chamber must be coated. In this study, a coated piston and intake and exhaust valves with coated combustion faces, backsides, and stems are installed in a single-cylinder research engine to evaluate the effect of high coated fractions of the combustion chamber in a knock-sensitive architecture.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

An Investigation into the Effects of Swirl on the Performance and Emissions of an Opposed-Piston Two-Stroke Engine using Large Eddy Simulations

2022-08-30
2022-01-1039
Opposed-piston two-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a conventional four-stroke diesel engine. However, the uniflow scavenging process is difficult to control over a wider range of speed and loads due to its sensitivity to pressure dynamics, port timings, and port design. Specifically, the angle of the intake ports can be used to generate swirl which has implications for open and closed cycle effects. This study proposes an analysis of the effects of port angle on the in-cylinder flow distribution and combustion performance of an OP-2S using computational fluid dynamics engine. Large Eddy Simulation (LES) was used to model turbulence given its ability to predict in-cylinder mixing and cyclic variability. A three-cylinder model was validated to experimental data collected by Achates Power and the grid was verified using an LES quality approach from the literature.
X