Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Study of Effect of Gaseous Fuels with Different Carbon Numbers on Autoignition Properties

2022-01-09
2022-32-0084
Internal combustion engines have been required to achieve even higher thermal efficiency and cleaner exhaust emissions in recent years in order to comply with increasingly tighter environmental regulations every year owing to global warming and other environmental issues. Another factor involved here is that global energy demands have prompted a quest for alternatives to liquid fuels such as gasoline, diesel fuel and other petroleum-derived fuels. Homogeneous Charge Compression Ignition (HCCI) engines, featuring higher compression ratios and uniform, lean combustion, are a promising technology for improving the efficiency and reducing the emissions of internal combustion engines. However, it is difficult to control the ignition timing of HCCI engines[1],[2] because they lack any physical means of controlling ignition.
Journal Article

Effects of Ignition Timing and Fuel Chemical Composition on Autoignition Behavior and Knocking Characteristics under Lean Conditions

2022-01-09
2022-32-0070
This study focused on autoignition behavior and knocking characteristics. Using an optically accessible engine, autoignition behavior was observed over the entire bore area, and the relationship between autoignition behavior and knocking characteristics was clarified on the basis of visualized combustion images and frequency analysis of the in-cylinder pressure waveform. In addition, chemical kinetic simulations were used to investigate the effects of different fuel chemical compositions on combustion and autoignition characteristics under equivalent octane ratings. The results showed that the rate of autoignition development has a significant effect on knocking intensity. In addition, the ρ1,0 mode is the dominant vibration mode caused by knocking, regardless of the location of autoignition. It can be inferred that strong knocking is caused by multiple vibration modes.
Technical Paper

Effects of Uniform and Non-uniform Electric Field on Premixed Combustion

2007-10-30
2007-32-0034
The purpose of this study is to elucidate the flame propagation behavior under the electric field application by using the constant volume vessel. The laser induced breakdown applies the ignition and Nd:YAG laser is used. A homogeneous propane-air mixture is used and three equivalence ratios, 0.7, 1.0 and 1.5 are tested. In the uniform electric field, the premixed flame rapidly propagates toward both upward and downward directions and the flame front becomes a cylindrical shape. The maximum combustion pressure decreases with an increase of input voltage because of an increase of heat loss to the electrode, however the combustion duration is hardly affected by the input voltage. In the non-uniform electric field, the flame propagation velocity of downward direction increases. The combustion enhancement effect is remarkably when the input voltage is larger than 12 kV because the brush corona occurs and intense turbulence is generated on the flame front.
X