Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Uncoated Gasoline Particulate Filter Performance for US EPA MY27+ Particulate Mass Emissions Regulation

2024-04-09
2024-01-2383
The gasoline particulate filter (GPF) represents a practical solution for particulate emissions control in light-duty gasoline-fueled vehicles. It is also seen as an essential technology in North America to meet the upcoming US EPA tailpipe emission regulation, as proposed in the “Multi-pollutant Rule for Model Year 2027”. The goal of this study was to introduce advanced, uncoated GPF products and measure their particulate mass (PM) reduction performance within the existing US EPA FTP vehicle testing procedures, as detailed in Code of Federal Regulations (CFR) part 1066. Various state-of-the-art GPF products were characterized for their microstructure properties with lab-bench checks for pressure drop and filtration efficiency, then pre-conditioned with an EPA-recommended 1500 mile on-road break-in, and finally were tested on an AWD vehicle chassis-dyno emissions test cell at both 25°C and -7°C ambient conditions.
Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

Challenges of Particulate Number above 10nm Emissions for a China 6 Compliant Vehicle to Meet Future Regulation

2023-04-11
2023-01-0377
As the official proposal for emission regulation Euro 7 has been released by European Commission, PN above 10nm is taken into consideration for the ultrafine particulate emissions control. The challenges of GPF filtration efficiency emerge for the light-duty manufactures to meet the future emission standards. In the present study, a China 6 compliant vehicle was tested to reveal its performance over the China 6 standards and potential to meet the upcoming Euro 7. Three GPF product types (Gen 1, Gen 2, and concept Gen 3) were mounted to the tested vehicle. WLTC tests were conducted on chassis dynamometer in laboratory as well as a self-designed aggressive cycle (“Base Cycle”) tests. To explore the GPFs performance for PN emissions above 10nm against the proposed limit 6.0E11 #/km, PN emission above 10nm were measured in our laboratory tests for both engine out and tailpipe as well as the PN emission above 23nm.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2022-03-29
2022-01-0540
This review covers advances in regulations and technologies in the past year in the field of vehicular emissions. We cover major developments towards reducing criteria pollutants and greenhouse gas emissions from both light- and heavy-duty vehicles and off-road machinery. To suggest that the transportation is transforming rapidly is an understatement, and many changes have happened already since our review last year [1]. Notably, the US and Europe revised the CO2 standards for light-duty vehicles and electrification mandates were introduced in various regions of the world. These have accelerated plans to introduce electrified powertrains, which include hybrids and pure electric vehicles. However, a full transformation to electric vehicles and the required grid decarbonization will take time, and policy makers are accordingly also tightening criteria pollutant standards for internal combustion engines.
Technical Paper

A Study of Emission Durability and Ash Accumulation of “Advanced Three-way Catalyst Integrated on Gasoline Particulate Filter” for BS6 (Stage2) Applications

2021-09-22
2021-26-0182
India BS6 Stage2 (2023) regulations demand all gasoline direct injection (GDI) vehicles to meet particulate number emissions (PN) below 6x10+11# per km. Gasoline particulate filters (GPF) are a proven technology and enable high PN filtration efficiencies throughout the entire vehicle lifetime. One challenge for GPF applications could be the changing emission performance characteristics as a function of mileage due to collected ash and/or soot deposits with implications on back pressure losses. The main objective of this technical contribution is to study the above-mentioned challenges while applying Indian driving conditions and typical Indian climate and other ambient conditions. The substrate technology selected for this study is a high porosity GPF designed to enable the integration of a three-way functionality into the GPF, commonly described as catalyzed GPF (cGPF).
Technical Paper

Evolution of Tailpipe Particulate Emissions from a GTDI Mild-Hybrid SUV with a Gasoline Particulate Filter

2021-04-06
2021-01-0582
The ceramic wall-flow filter has now been globally commercialized for aftertreatment systems in light-duty gasoline engine powered vehicles. This technology, known as the gasoline particulate filter (GPF), represents a durable solution for particulate emissions control. The goal of this study was to track the evolution of tailpipe particulate and gaseous emissions of a 4-cylinder gasoline turbocharged direct injected (GTDI) 2018 North American (NA) mild-hybrid light-duty SUV, from a fresh state to the 4,000-mile, EPA certification mileage level. For this purpose, a production TWC + GPF aftertreatment system designed for a China 6b-compliant variant of this test vehicle was retrofitted in place of the North American Tier 3 Bin 85 TWC-only system. Chassis dyno emissions testing was performed at predetermined mileage points with real-world, on-road driving conducted for the necessary mileage accumulation.
Technical Paper

PN Emission Measurements and Real-Driving-Emissions (RDE) Simulation on China 6 Light-Duty Gasoline Vehicles

2021-04-06
2021-01-0588
As the China 6 light duty vehicle emission regulation is being implemented, PN becomes a challenge for vehicle type-approval emission tests. WLTC has replaced NEDC as the Type-I test cycle on the chassis dynamometer with more dynamic driving events. In addition, on-road RDE test is a challenge to calibrate the engine to meet tailpipe PN emissions because of the nature of the on-road conditions, i.e. varying ambient temperature, driving dynamics, altitude, etc. In response to China 6 requirements, GPF technology has been introduced. In this study, we pulled four China 6 compliant gasoline vehicles for the PN emission survey. The selected vehicles covered typical engine technologies including GDI/MPI with natural aspiration/turbo charger, representing the state of the art of the local engine capability. On one hand, it helps to build insight into the status of China 6 engine emission control technology through WLTC and RTS95 tests.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2019-04-02
2019-01-0314
This review paper covers major regulatory and technology developments in 2018 pertinent to tailpipe emissions of greenhouse gases and criteria pollutants. Europe has proposed ambitious reductions in CO2 limits for both light- and heavy-duty sectors. The challenge is compounded with changing measurement norms and a significant shift away from fuel efficient diesels in the light-duty (LD) space. Both incremental and step changes are being made to advance internal combustion. New studies show that in-use NOx emissions from diesels can be much lower than required by the Euro 6 regulation. Discussions have already started on Euro 7 regulations, and the leading regulatory concepts and proposed technical solutions are provided. In the heavy-duty (HD) sector, the progress is outlined in improving engine and vehicle fuel efficiency through the US Department of Energy’s (DOE’s) SuperTruck II program and other representative studies.
Book

Reducing Particulate Emissions in Gasoline Engines

2018-11-28
For years, diesel engines have been the focus of particulate matter emission reductions. Now, however, modern diesel engines emit less particles than a comparable gasoline engine. This transformation necessitates an introduction of particulate reduction strategies for the gasoline-powered vehicle. Many strategies can be leveraged from diesel engines, but new combustion and engine control technologies will be needed to meet the latest gasoline regulations across the globe. Particulate reduction is a critical health concern in addition to the regulatory requirements. This is a vital issue with real-world implications. Reducing Particulate Emissions in Gasoline Engines encompasses the current strategies and technologies used to reduce particulates to meet regulatory requirements and curtail health hazards - reviewing principles and applications of these techniques.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2018-04-03
2018-01-0329
This review article summarizes major and representative developments in vehicle emissions regulations, engine efficiency, and emission control from 2017. The article starts with the key regulatory developments in the field, including newly proposed European light-duty (LD) CO2 regulations (15 and 30% cuts in 2025 and 2030, respectively, from 2020 levels) and technical improvements of the Euro 6 real driving emissions (RDE) regulations. China finalized their new energy vehicle (NEV) mandates for 2019 and 2020. LD and heavy-duty (HD) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas (GHG) regulations. Several LD gasoline concepts are achieving 10-15% and some up to 35% reductions relative to gasoline direct injection (GDI) engines of today.
Technical Paper

Optical Advantages of Thin Window Hybrid Windshields

2018-04-03
2018-01-0468
The adoption of head-up displays (HUDs) is increasing in modern automobiles. Yet integrating this technology into vehicles with standard windshield (WS) laminates can create negative effects for drivers, primarily due to the thickness of glass used. The double ghosting in HUD images is typically overcome by employing a wedged PVB between the two glass plies of the laminate. Another solution is to reduce the thickness of the glass without impacting the overall windshield toughness. Although this still requires the use of a wedged PVB to eliminate HUD ghosting, the thinner glass provides opportunity to increase the image size. However, reducing the thickness of a soda-lime glass (SLG) ply or plies in a conventional soda-lime glass (SLG) laminate can significantly impact the robustness of the laminate to external impact events.
Technical Paper

Review of Vehicle Engine Efficiency and Emissions

2017-03-28
2017-01-0907
This review paper summarizes major and representative developments in vehicle engine efficiency and emissions regulations and technologies from 2016. The paper starts with the key regulatory developments in the field, including newly proposed European RDE (real driving emissions) particle number regulations, and Euro 6 type regulations for China and India in the 2020 timeframe. China will be tightening 30-40% relative to Euro 6 in 2023. The California heavy duty (HD) low-NOx regulation is advancing and the US EPA is anticipating developing a harmonized proposal for implementation in 2023+. The US also finalized the next round of HD GHG (greenhouse gas) regulations for 2021-27, requiring 5% engine CO2 reductions. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations.
Journal Article

Vehicular Emissions in Review

2016-04-05
2016-01-0919
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2015. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe is continuing developments towards real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
Journal Article

Low Cost LEV-III, Tier-III Emission Solutions with Particulate Control using Advanced Catalysts and Substrates

2016-04-05
2016-01-0925
A production calibrated GTDI 1.6L Ford Fusion was used to demonstrate low HC, CO, NOx, PM (particulate mass), and PN (particulate number) emissions using advanced catalyst technologies with newly developed high porosity substrates and coated GPFs (gasoline particulate filters). The exhaust system consisted of 1.2 liters of TWC (three way catalyst) in the close-coupled position, and 1.6L of coated GPF in the underfloor position. The catalysts were engine-aged on a dynamometer to simulate 150K miles of road aging. Results indicate that ULEV70 emissions can be achieved at ∼$40 of PGM, while also demonstrating PM tailpipe performance far below the proposed California Air Resources Board (CARB) LEV III limit of 1 mg/mi. Along with PM and PN analysis, exhaust system backpressure is also presented with various GPF designs.
Journal Article

Review of Vehicular Emissions Trends

2015-04-14
2015-01-0993
This review paper summarizes major developments in vehicular emissions regulations and technologies from 2014. The paper starts with the key regulatory advancements in the field, including newly proposed Non-Road Mobile Machinery regulations for 2019-20 in Europe, and the continuing developments towards real driving emissions (RDE) standards. An expert panel in India proposed a roadmap through 2025 for clean fuels and tailpipe regulations. LD (light duty) and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are demonstrating more than 50% brake thermal efficiency using methods that can reasonably be commercialized. Next, NOx control technologies are summarized, including SCR (selective catalytic reduction), lean NOx traps, and combination systems. Emphasis is on durability and control.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Technical Paper

Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation

2015-04-14
2015-01-1001
With the increasing number of automobiles, the worldwide problem of air pollution is becoming more serious. The necessity of reducing tail-pipe emissions is as high as ever, and in countries all over the world the regulations are becoming stricter. The emissions at times such as after engine cold start, when the three-way catalyst (TWC) has not warmed up, accounts for the majority of the emissions of these pollutants from vehicles. This is caused by the characteristic of the TWC that if a specific temperature is not exceeded, TWC cannot purify the emissions. In other words, if the catalyst could be warmed up at an early stage after engine start, this would provide a major contribution to reducing the emissions. Therefore, this research is focused on the substrate weight and investigated carrying out major weight reduction by making the porosity of the substrate larger than that of conventional products.
Journal Article

Vehicular Emissions in Review

2014-04-01
2014-01-1491
The review paper summarizes major developments in vehicular emissions regulations and technologies in 2013. First, the paper covers the key regulatory developments in the field, including proposed light-duty (LD) criteria pollutant tightening in the US; and in Europe, the continuing developments towards real-world driving emissions (RDE) standards. Significant shifts are occurring in China and India in addressing their severe air quality problems. The paper then gives a brief, high-level overview of key developments in fuels. Projections are that we are in the early stages of oil supply stability, which could stabilize fuel prices. LD and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are or will soon be demonstrating 50% brake thermal efficiency using common approaches.
Journal Article

Vehicular Emissions in Review

2012-04-16
2012-01-0368
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2011. First, the paper covers the key regulatory developments in the field, including proposed criteria pollutant tightening in California; and in Europe, the newly proposed PN (particle number) regulation for direct injection gasoline engines, test cycle development, and in-use testing discussions. The proposed US LD (light-duty) greenhouse gas (GHG) regulation for 2017-25 is reviewed, as well as the finalized, first-ever, US HD (heavy-duty) GHG rule for 2014-17. The paper then gives a brief, high-level overview of key emissions developments in LD and HD engine technology, covering both gasoline and diesel. Emissions challenges include lean NOx remediation for diesel and lean-burn gasoline to meet both the emerging NOx and GHG regulations.
Technical Paper

Electronic and Atomistic Roles of Cordierite Substrate in Sintering of Washcoated Catalysts for Automotive Exhaust Gas Emissions Control: Multi-scale Computational Chemistry Approach based on Ultra-Accelerated Quantum Chemical Molecular Dynamics Method

2012-04-16
2012-01-1292
Multi-scale computational chemistry methods based on the ultra-accelerated quantum chemical molecular dynamics (UA-QCMD) are applied to investigate electronic and atomistic roles of cordierite substrate in sintering of washcoated automotive catalysts. It is demonstrated that the UA-QCMD method is effective in performing quantum chemical molecular dynamics calculations of crystals of cordierite, Al₂O₃ and CeZrO₄ (hereafter denoted as CZ). It is around 10,000,000 times faster than a conventional first-principles molecular dynamics method based on density-functional theory (DFT). Also, the accuracy of the UA-QCMD method is demonstrated to be as high as that of DFT. On the basis of these confirmations and comparison, we performed extensive quantum chemical molecular dynamics calculations of surfaces of cordierite, Al₂O₃ and CZ, and interfaces of Al₂O₃ and CZ with cordierite at various temperatures.
X