Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Visual Thermodynamics: Processes in Log(p)-Log(T) Space

1999-03-01
1999-01-0516
A new technique has been developed to allow engine performance engineers to visualize and communicate a wide range of thermodynamic issues and constraints in a single diagram. The technique, called Visual Thermodynamics, is the presentation of engine cycle data in logarithmic pressure and logarithmic temperature space, log(p)-log(T). Visual Thermodynamics is a thought organization and concept visualization tool. It is not intended to provide high-precision numerical results. The utility of the technique is in comparing engine concepts, assessing trends, identifying boundaries of operation and building a general understanding of engine system behavior. The technique provides a powerful mechanism for communicating engine thermodynamic issues to both technical and non-technical colleagues.
Technical Paper

A New Method for Engine Low Power Detection in Trucks

1997-11-17
973181
A new method for detecting the low power conditions on electronically-controlled diesel engines used in on-road vehicles has been developed. The advantage of this method is that it uses readily available diagnostic tools and engine installed sensors with no necessity for a dynamometer test. Without removing the engine, it gives an estimate of the real engine power which is accurate to 5%.
Technical Paper

Crankshaft Design Using a Generalized Finite Element Model

1979-02-01
790279
An analytical tool for the efficient analysis of crankshaft designs has been developed. Finite element models are generated from a limited number of key dimensions which describe a family of crankshafts. These models have been verified by stress and deflection measurements on several crankshaft throws.
Technical Paper

Field Evaluation of Oil Analysis as a Maintenance Tool

1977-02-01
770644
The effectiveness of using oil analysis as a routine maintenance tool in a field service environment was investigated. A line-haul, inter-city and two mining fleets were studied. The fleets were split into sample and control groups to obtain a standard of comparison. Oil analysis was found to be most effective for detecting leaks in the air intake system and coolant and fuel in the oil. Implementation problems such as irregular sampling, sample contamination, and lack of follow-up hindered its effectiveness in some of the fleets studied. A comparison of the maintenance costs of the sample and control groups in all the fleets studied showed oil analysis was not effective in significantly lowering maintenance costs.
X