Refine Your Search

Topic

Author

Search Results

Journal Article

Next Improvement Potentials for Heavy-Duty Diesel Engine - Tailor the Fuel Injection System to the Combustion Needs

2017-03-28
2017-01-0705
Future diesel engine legislation Tier 4 / Stage V and EU6d demand further improvements to reduce CO2 while keeping the already low NOx emissions levels. For US trucks a more strict limit of 0.2 g/bhp-hr NOx emissions need to be achieved. In this trade-off, system costs and complexity of the after-treatment are defining the constraint in which the common rail fuel injection system layout has to be defined. The increase of rail pressure was in the past the major step to control the soot emissions in view of low engine-out NOx emissions by applying massive EGR. With the on-going development of NOx-aftertreatment by Selective Catalytic Reduction (SCR), conversion efficiencies of up to 97% allow to reduce the EGR usage and rail pressure usage. In that context, the steepness of injection rate, the nozzle flow rate and the injection pressure are remaining parameters to control the NOx emissions.
Technical Paper

Study on Flame Behavior Control by the Electric Field

2015-11-17
2015-32-0738
The purpose of this study is to elucidate flame propagation behavior of homogeneous propane-air mixture under application of non-uniform electric field. A needle-shaped electrode was attached to the ceiling and a plate electrode was set at bottom of combustion chamber, so that the electric field was applied in the direction of the chamber's vertical axis. A homogeneous propane-air mixture was supplied at equivalence ratio of 1.0 and was ignited by leaser induced breakdown under atmospheric pressure and room temperature. It was found that the flame front and plate electrode were repelled each other and a thin air layer was formed between the flame and plate electrode when a relatively low positive DC non-uniform electric field was applied to the needle-shaped electrode. It might be thought that the induced current was generated in the flame front, so that the flame front and plate electrode repelled each other.
Technical Paper

Improvement of the Robustness of the Common Rail System for the Fuel Diversification

2015-09-01
2015-01-1967
With the diesel emissions and fuel consumption regulations and laws being tightened up, Common Rail System (CRS), capable of accurate and high-pressure diesel fuel injection, has become very popular in the world, and this CRS market is expected to continue to grow in the future. As use of the CRS becomes widespread, CRS is supposed to be used in a wide variety of environment, e.g. bad fuel (for example, much dust [1] and/or water), which increases concerns of CRS reliability. In an attempt to cope with such bad fuel properties, CRS and Fuel collected from the market was investigated. And based on this result, a new test method was worked out to simulate fuel stresses in the market. This test method verified the improved design of CRS with enhanced fuel robustness. This paper describes the new test method and the fuel robustness-enhancing effect of CRS based on the test method.
Technical Paper

Concepts and Evolution of Injector for Common Rail System

2012-09-10
2012-01-1753
Diesel injection equipment is required to be more accurate and higher in pressure to meet the increasingly strict emission, fuel consumption regulations and higher engine performance. It also needs to achieve a number of requirements such as robustness against diversified market fuels, pressure maintenance characteristics in the idle stop system (ISS), easy installation to engine, etc. One of the key component to meet these demands is injector.
Journal Article

Comparison of Reponses of the Flex-PLI and TRL Legform Impactors in Pedestrian Tests

2012-04-16
2012-01-0270
Injuries to the lower extremities are one of the major issues in vehicle-to-pedestrian collisions. To evaluate pedestrian lower extremity protection, the Transport Research Laboratory (TRL) legform impact tests have been conducted according to the specifications in the EU directive. The TRL legform impactor consists of a tibia and a femur steel shaft connected by deformable knee bars. A Flexible Pedestrian Leg-form Impactor (Flex-PLI), which has flexible femur and tibia, is examined in the Global Technical Regulation (GTR). Previous studies compared the responses of both impactors; however, the relation between the tibia acceleration in the TRL legform impactor and the maximum bending moment in the Flex-PLI (both injury measures are for the tibia fracture) is not understood sufficiently.
Technical Paper

Response Surface Modeling of Diesel Spray Parameterized by Geometries Inside of Nozzle

2011-04-12
2011-01-0390
A response surface model of a diesel spray, parameterized by the internal geometries of a nozzle, is established in order to design the nozzle geometries optimally for spray mixing. The explanatory variables are the number of holes, the hole diameter, the inclined angle, the hole length, the hole inlet radius, K-factor and the sac diameter. The model is defined as a full second-order polynomial model including all the first-order interactions of the variables, and a total of 40 sets of numerical simulations based on D-optimal design are carried out to calculate the partial regression coefficients. Partial regression coefficients that deteriorate the estimate accuracy are eliminated by a validation process, so that the estimate accuracy is improved to be ±3% and ±15% for the spray penetration and the spread, respectively. Then, the model is applied to an optimization of the internal geometries for the spray penetration and the spray spread through a multi-objective genetic algorism.
Technical Paper

High Accuracy Exhaust Gas Temperature Sensor with Anti-Resonance Structure

2009-04-20
2009-01-0641
With regulations on exhaust-gas emissions becoming increasingly tight worldwide, high-accuracy exhaust-gas temperature (EGT) sensors are critical to precisely control the after-treatment systems of diesel engines. In addition, demands for longer sensor probes are growing, to enable the direct measurement of temperature at the core of the diesel particulate filter (DPF). To realize this, improved vibration resistance is required because the extension of the probe involves stronger vibration. An increasing number of turbocharged engines are expected to appear to satisfy fuel-efficiency requirements, and systems equipped with an EGT sensor will become more common for turbocharger protection. Vibration resistance is critical for an EGT sensor installed at the pre-turbocharger position because the sensor will be exposed to heavy vibration generated by the turbocharger. This study introduces a high-accuracy EGT sensor with an anti-resonance structure developed to satisfy these needs.
Technical Paper

Super-slim 2 Axes Automotive Accelerometer Using MEMS Technology

2009-04-20
2009-01-0636
We have developed a novel wafer process for capacitive sensing accelerometer using surface Micro Electrical Mechanical Systems (MEMS) technology and successfully applied to the fabrication process. Our new process combines with a single crystal SOI (Si on Insulator) wafer, high aspect ratio silicon etching and newly developed anhydrous HF/Alcohol etch process of silicon oxides. Although wet conditions such as HF/water etch occurs stiction of mobile structure, our anhydrous HF/Alcohol etch process technology occurs no stiction of mobile structures, because of gas phase (dry) process. In our process, we have achieved smaller-sized sensor chip compared to our conventional 2 axes accelerometer.
Technical Paper

Prioritized CSMA Protocol for Roadside-to-Vehicle and Vehicle-to-Vehicle Communication Systems

2009-04-20
2009-01-0165
This paper proposes Prioritized-CSMA (Carrier Sense Multiple Access) protocol for Japanese vehicle safety communications (VSC). To realize Japanese VSC, we have studied a protocol to carry out Roadside-to-Vehicle (R2V) and Vehicle-to-Vehicle (V2V) communications on single channel because a single 10MHz bandwidth channel on UHF band is allocated for VSC in Japan. In this case, R2V communication requires higher quality than V2V communication, so we have developed a protocol to prevent interference between R2V and V2V communications. The proposed protocol has been evaluated by field experiments and a simulation. The results confirm that the proposed protocol prevents the interference effectively and it has capability to achieve high-quality R2V communication in actual case.
Technical Paper

A Stand-Alone Charging Management System to Improve Fuel Economy, Based on an Algorithm of Estimating Vehicle Motion

2008-10-20
2008-21-0045
Increased interest in global warming issues requires rapid improvements in reduction of CO2 emissions. The automotive industry is placing high importance on improving fuel economy performance across their entire product lines. Charging Management System is a necessary element towards fuel economy improvement. Many of today's charging management systems perform at least two important functions: improving efficiency based on vehicle motion, and detecting battery state of charge. These systems become more complicated as more components (i.e. generators, current sensors and ECU) and software are added. Therefore, it is difficult to develop charging management systems for an entire product line and difficult to retrofit the system for vehicles already in production. A stand-alone charging management system solves these issues. This system is independent of the other vehicle systems. The software for improving fuel economy is installed in the generator or current sensor.
Technical Paper

A Matrix Infrared Sensor System for Improving Thermal Comfort in Passenger Compartments

2008-04-14
2008-01-0835
Customers tend to require more comfortable climate control in vehicles. This paper is concern with a new infrared sensor that detects surface temperature at six separate locations, and a climate control system that incorporates the sensor. In a conventional system using an air temperature sensor and solar radiation sensor, climate conditions are usually controlled according to the thermal load. It is believed that more comfortable climate control can be realized by using an infrared sensor to detect passengers' surface temperature. The sensor consists of a lens, an IC with six thermopiles, a circuit and a case, and has been improved to detect in-cabin surface temperature accurately even under severe environmental conditions. The HVAC system controls the outlet air temperature and mode individually for each seat according to detected temperatures.
Technical Paper

Mobile Air-conditioning Actions for Global Warming Reduction

2008-01-09
2008-28-0016
In Japan, from the viewpoint of ozone layer protection, specified CFCs (Chlorofluorocarbons) phase-out started in 1992 and completed by 1995. HFC-134a (Hydro fluorocarbon-134a) is now dominant in the market. HFC-134a, the replacement, has zero ozone depleting potential, while it still has a higher global warming potential (GWP = 1430). In this paper, efforts of DENSO and the Japanese industry from aspects of refrigerant emission reduction and energy efficiency improvement are introduced.
Technical Paper

The Advanced Diesel Common Rail System for Achieving a Good Balance Between Ecology and Economy

2008-01-09
2008-28-0017
At present, various efforts are being made in the industrial world to preserve the earth's environment. Automobile industry has to comply with the emission control regulations including NOx and PM and the requirement of reducing CO2 emission from the viewpoint of global warming protection and energy saving. In these situations, diesel engines having a high potential to reduce CO2 emission are attracting much attention. In order to enhance the potential of diesel to reduce CO2 while solving its problems (“slow, dirty, noisy”), common rail systems are vital. DENSO developed an advanced common rail system (CRS) that integrates fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa injection pressure. This paper describes the injection performance and effects of the 180MPa common rail system and then explains the next generation common rail system.
Technical Paper

Mixed Signal Power IC for Automotive Electronics

2007-04-16
2007-01-1595
Many ICs are used in various electronic components in automotive applications, such as ECUs (electronic control units) and smart actuators. Automotive ICs required the following features: (1) high integration of analog, digital and output devices; (2) high breakdown voltage for analog devices standing the battery voltage; (3) highly accurate control for analog circuits; (4) susceptibility under harsh operating conditions, such as high ambient temperature and high humidity; and (5) high surge immunity such as ESD (electrostatic discharge) robustness. To meet these requirements, we developed analog and output devices with improved surge endurance based on SOI wafer and trench-dielectric-isolation technologies. Analog circuit applications, especially accurate power management or high-precision solenoid driving, demands stable temperature-compensated output. Load dump and battery-jumping also needs high voltage protection and high noise immunity for these devices.
Technical Paper

Double-pipe Internal Heat Exchanger for Efficiency Improvement in Front Automotive Air Conditioning System

2007-04-16
2007-01-1523
In automotive air conditioning, balancing comfort and fuel efficiency is very important. Vehicle cooling performance improvements during initial cool down has reached a limit in recent years, especially in very hot regions. We have addressed this issue by developing a unique double-pipe internal heat exchanger. In the main discourse, we first clarify the concept of the internal heat exchanger system (IHE) using the temperature difference between the high and low pressure pipes in the refrigeration cycle, and propose the application of an efficient internal heat exchanger. This unique double-pipe internal heat exchanger can easily be manufactured by inserting the inner pipe into the outer pipe and by fixing the pipes at both ends. The length of the IHE is 400mm. This double-pipe internal heat exchanger can increase cooling performance by 5-12% at the equivalent power consumption levels in the same space as a conventional front air conditioner system.
Technical Paper

Power Control Unit for High Power Hybrid System

2007-04-16
2007-01-0271
The hybrid vehicle market is growing rapidly recently, while carmakers are planning to expand their lineup of hybrid vehicles from the compact to the full-size. To make this rapid development possible, the Power Control Unit (PCU) that controls traction motors of hybrid vehicles is required both to be smaller in size for the ease of packaging, and higher in output power to fulfill the need for full-size vehicles. To achieve both of these targets, we have developed a PCU for the Lexus LS600h with higher output power per volume through significantly improved cooling design for power semiconductor chips by dissipating heat from both sides of them. The following is an overview of the developed technology.
Technical Paper

Analysis of Drivers' Behaviors in Car Following Based on Performance Index for Approach and Alienation

2007-04-16
2007-01-0440
A performance index for approach and alienation that estimates driver's status such as inattentive operation from the vehicles behavior as a result of the driver's visual cognition, judgment, and operation is proposed to prevent rear-end crashes. The index is based on the hypothesis that drivers are performing approach detection with change of area of a preceding car on the retina. First, it is shown that safe driving behaviors of experimental results and micro data of traffic accidents with a rear-end collision as danger status can be distinguished using the proposed index. Then, results of basic laboratory experiments with a joystick and a LCD system show that the index reflects changes of the danger level, visual capability, and awareness of the drivers. In addition, a driver model of the deceleration behaviors in preceding-car-following situation is developed by hypothesizing that drivers determine the acceleration and deceleration behavior by the function of the proposed index.
Technical Paper

Finite Element Analysis of Pedestrian Lower Extremity Injuries in Car-to-Pedestrian Impacts

2007-04-16
2007-01-0755
In order to prevent lower extremity injuries to a pedestrian when struck by a car, it is important to elucidate the loadings from car front structures on the lower extremities and the injury mechanism caused by these loadings. In this study, using a human finite element (FE) model, a bending moment diagram and a stress diagram of tibia were introduced to examine the effects of loading from car structures. By the lower absorber of the car, the bending moment was distributed over the tibia with small moment at the upper tibia location that can reduce knee injury risk. Certain positions of the lower absorber reduced the tibia fracture risk. An FE analysis of a legform impact test using the TRL legform impactor was also conducted, and a relation was found between the injury criteria of the TRL legform impactor and the human FE model. High acceleration of the TRL legform impactor corresponded to the tibia fracture or MCL rupture of the human FE model.
Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
Technical Paper

180MPa Piezo Common Rail System

2006-04-03
2006-01-0274
The challenge for the diesel engines today is to reduce harmful emissions, such as particulate matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power, which are its main advantages. To meet this challenge, DENSO has developed an advanced common rail system (CRS) that uses piezo actuated fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa, currently the world's highest commercially available diesel fuel injection pressure. The DENSO piezo injector incorporates an internally developed piezoelectric element that energizes quicker than its solenoid counterpart, thereby reducing the transition time for the start and end of the fuel injection event. The piezoelectric element and unique passage structure of the DENSO injector combine to provide a highly reliable and responsive fuel injection event.
X