Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Research in OFDM-Based High-Speed In-Vehicle Network Connectivity for Cameras and Displays

2021-04-06
2021-01-0151
Growing trends of connected and autonomous vehicles have pushed for increased resolutions of cameras to 8Mpix and displays to 4K/8K, leading to requirements for high-speed interfaces that support 10Gbps and beyond. Unlike data center or enterprise networks which normally operates under controlled indoor environments, in-vehicle networks are required to operate in harsh temperature and interference environments. Due to cost restrictions, the use of single pair wire is prevalent for in-vehicle networks. In general, as data transmission speed increase, signal spectrum spreads across greater frequency range. Since insertion loss of a channel increases in proportion to signal frequency, it becomes more difficult to secure SNR (signal-to-noise ratio) margins as bit rate increases. This makes it increasingly difficult for a device (e.g. ECUs, sensors, and displays) with high-speed communication interface to meet EMC (electromagnetic compatibility) criteria imposed by automotive OEMs.
Technical Paper

Dynamically Adjustable LiDAR with SPAD Array and Scanner

2021-04-06
2021-01-0091
An important function of an Automated Driving (AD) system is to detect objects including vehicles and pedestrians on the road. Typical devices for detecting those objects include cameras, millimeter-wave RADAR, and light detection and ranging (LiDAR). LiDAR uses the flight time of a short-wavelength electromagnetic wave. Because of that LiDAR is expected to find even small objects such as tire fragments on a road in high resolution. The detection performance required for LiDAR depends on the operational design domain (ODD). For example, while a vehicle is travelling at high speeds, LiDAR needs to detect apparently small objects at long distances, and while it is travelling at low speeds, LiDAR has to detect objects over a wide angular range. Conventional LiDAR is developed to satisfy all requirements, providing performance including detection distance, resolution, and angle of view tends to expose issues such as cost and size when it is mounted onboard.
Technical Paper

High Resolution LiDAR Based on Single Chip SPAD Array

2019-04-02
2019-01-0119
It is important that Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (AD) detect on-road objects, road vehicles and pedestrians. The typical detection devices mounted on ADAS and AD include a camera, a millimeter-wave radar and a Light Detection And Ranging (LiDAR). Since LiDAR can obtain accurate distance and fine spatial resolution due to its short wavelength, it is expected that small objects such as a tire can be detected. However, the conventional LiDAR is equipped with multiple light transmitters and light receivers such as avalanche photo diodes. This causes LiDAR system to be expensive and large in size. Aiming to reduce the cost and size of LiDAR, we employed Single-Photon Avalanche Diode (SPAD) which can be fabricated by CMOS process and easily arrayed. We also developed “Single Chip SPAD Array“ in which the two-dimensional array of SPAD and a signal processing block of range calculation were integrated into a single chip.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Technical Paper

Development of High Accuracy and Quick Light-off NOx Sensor

2018-04-03
2018-01-0334
For the purpose of coping with the strengthening of NOx exhaust gas control and fuel consumption control, it is indispensable to improve the NOx purification capacity. In view of this, vehicle manufacturers are in the course of developing high performance SCR (Selective Catalytic Reduction) systems [1, 2]. For such SCR systems to be realized, high precision NOx sensors for carrying out urea injection quantity control and SCR degradation diagnosis are absolutely indispensable. Detection of NOx concentration by means of a NOx sensor is generally performed as follows: O2 is discharged by means of an O2 detection electrode; remaining NOx is decomposed by a NOx detection electrode; NOx concentration is then detected as electric current that flows when oxygen ions are conduct through solid electrolyte. In order to detect NOx of ppm-order, it is necessary to detect minute current of nA-order with high accuracy.
Technical Paper

Efficient Heat Pump System for PHEV/BEV

2017-03-28
2017-01-0188
As vehicle emission regulations become increasingly rigorous, the automotive industry is accelerating the development of electrified vehicle platforms such as Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Since the available waste heat from these vehicles is limited, additional heat sources such as electric heaters are needed for cabin heating operation. The use of a heat pump system is one of the solutions to improve EV driving range at cold ambient conditions. In this study, an efficient gas-injection heat pump system has been developed, which achieves high cabin heating performance at low ambient temperature and dehumidification operation without the assistance of electric heaters in ’17 model year Prius Prime.
Technical Paper

Development of the Large Type Electric-Driven Refrigerator for the HV Truck

2017-03-28
2017-01-0137
In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
Technical Paper

Display System for Vehicle to Pedestrian Communication

2017-03-28
2017-01-0075
In the future, autonomous vehicles will be realized. It is assumed that traffic accidents will be caused by the overconfidence to the autonomous driving system and the lack of communication between the vehicle and the pedestrian. We propose that one of the solutions is a display system to give the information the state of vehicle to pedestrians. In this paper, we studied how the information influences the motion of pedestrians. The vehicle gives the information, which is displayed on road by using of color light (red, yellow and blue), of the collision risk determined by the TTC (Time to Collision). The pedestrian is ordered to cross the road in several cases of the TTC. In the presence of the TTC information, the number of the pedestrians, who did not cross the road in the case of short TTC (red light is displayed), increased from 52% to 67%. It is cleared that the pedestrians determined whether they crossed the road or not by the information effectively.
Technical Paper

Impact of Substrate Geometry on Automotive TWC Gasoline (Three Way Catalyst) Performance

2017-03-28
2017-01-0923
Tightening global emissions standards are driving automotive Original Equipment Manufacturer’s (OEM’s) to utilize Three Way Catalyst (TWC) aftertreatment systems that can perform with greater efficiency and greater measured control of Precious Group Metals (PGM) use. At the same time, TWC aftertreatment systems minimize exhaust system pressure drops. This study will determine the influence of catalyst substrate cell geometry on emission and PGM usage. Additionally, a study of lightoff and backpressure comparisons will be conducted. The two substrate configurations used are hex/750cpsi and square/750cpsi.
Technical Paper

Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst

2017-03-28
2017-01-0913
In order to comply with emission regulation, reach their profitability targets and minimise the in-use cost of their vehicles, OEMs are seeking solutions to optimise their aftertreatment systems. For Selective Catalytic Reduction (SCR) system engineers, one of the most important challenges is to reduce the system's cost, while keeping its high level of NOx emission reduction performance. Ways to achieve this cost reduction include 1. using an engine out NOx estimation model instead of a NOx sensor upstream of the SDPF (DPF coated with SCR) catalyst and 2. eliminating the Ammonia Slip Catalyst (ASC) downstream of the SDPF catalyst. Achieving these challenging targets requires actions on the complete SCR system, from the optimisation of mixing and uniformity in the SDPF catalyst to the development of robust controls. To face these challenges, a novel exhaust reverse flow concept with a blade mixer was developed.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Development of New Generation Battery Management ECU

2017-03-28
2017-01-1203
Recent electric vehicles use Li-ion batteries to power the main electric motor. To maintain the safety of the main electric motor battery using Li-ion cells, it is necessary to monitor the voltage of each cell. DENSO has developed a battery Electronic Control Unit (ECU) that contributes greatly to the reduction of the cost and the improvement of the reliability of the system. Each manufacturer has been developing a dedicated IC for monitoring the voltages of each cell of a battery. However, since the number of cells that can be monitored is limited, more than one IC is required to measure the voltages of a large number of cells. The increase in the number of ICs and the amount of insulator leads to the rise in system cost. DENSO has developed a dedicated IC that uses a proprietary high-breakdown voltage process, and which enables monitoring up to 24 cells with a single IC chip.
Technical Paper

Virtual Development for In-Vehicle Network Topology – A Case Study of CAN FD Physical Layer

2017-03-28
2017-01-0023
In-vehicle network communication is evolving faster speeds and higher performance capabilities, connecting the information possessed by ECU and sensors with the in-vehicle electronic systems which are continuing to develop. With the evolution of the complicated networks, it is becoming difficult to develop them without many verification of actual machine. On the other hand, as for the verification means required at the logic level or physical level for a network verification through ECU design, virtual verification in the whole vehicle is difficult due to speed increases and the sheer size of the system. Therefore, it is only applicable for systems which are limited to a domain or an area, and flexible and timely utilization would be difficult due to the changes in specifications.
Technical Paper

Accumulation Mechanism of Gasoline EGR Deposit

2017-03-28
2017-01-0806
Exhaust Gas Recirculation (EGR) systems reduce exhaust emissions and improve fuel efficiency. Recently, the number of EGR system installed vehicles has been increasing, especially for gasoline engine systems. One of the major causes of decreasing EGR function is deposit accumulation on a gas passage. The deposit consists mainly of hydrocarbons which are degradation products of fuel, thus the amount of deposit seems to be strongly affected by fuel compositions. Unfortunately there are not as many studies on EGR deposits with gasoline fuel as there are with diesel fuel. In this study, the influence of gasoline fuel compositions, especially aromatics which are major components of EGR gas, on chemical structures of the deposit were investigated. To clarify the accumulation mechanism of EGR deposits, a thermal oxidative degradation test with an autoclave unit and an actual gasoline engine test were employed.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Journal Article

Reduction of Cranking Noise from High Voltage Starter for One-Motor Two-Clutch Hybrid Systems

2017-03-28
2017-01-1167
In this paper, we propose a high voltage brushless AC starter that contributes to improved fuel efficiency and a reduction in the cost of the one-motor two-clutch hybrid system, which we call a 1MG2CL system. We have named it the HV starter, and it is composed of an AC motor, inverter and pinion with a shift mechanism. One of the issues with the 1MG2CL system is the high electrical energy when starting an ICE as it switches over from EV drive to HEV drive. While the ICE is starting, the main motor has to crank the ICE via the clutch; the clutch slips to absorb the main motor power, so the main motor has to output a high power to overcome the loss. Therefore, to contribute to reducing the electrical power by eliminating clutch slip losses, we developed an HV starter as a dedicated ICE starting device. Thanks to the reduction in electrical power, the HV starter is able to improve fuel efficiency and reduce system costs.
Journal Article

Shift-by-Wire System for Lexus RWD Vehicles

2017-03-28
2017-01-1094
Shift selection devices are desired to be flexible for design and layout, in order to realize the next generation of cockpits for Lexus vehicles. In addition, refined shift operation feelings are also required to be suitable for Lexus vehicles. To meet these demands, the Lexus LC500 has been equipped with a shift-by-wire system, which replaces the mechanical linkage between the shift selector and transmission with electrical signals and an actuator. This shift-by-wire system will be installed in a wide variety of Lexus powertrain lineup, including conventional gas vehicles and hybrid vehicles. Therefore, the next generation shift-by-wire system for Lexus has been developed with high reliability and applicability. This technology will be essential when autonomous driving and autonomous parking systems are realized in the near future.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Journal Article

2-Drive Motor Control Unit for Electric Power Steering

2017-03-28
2017-01-1485
The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
X