Refine Your Search

Topic

Author

Search Results

Technical Paper

Sunroof Buffeting Suppression Using a Dividing Bar

2007-04-16
2007-01-1552
This paper presents the results of CFD study on sunroof buffeting suppression using a dividing bar. The role of a dividing bar in side window buffeting case was illustrated in a previous study [8]. For the baseline model of the selected vehicle in this study, a very high level of sunroof buffeting, 133dB, has been found. The CFD simulation shows that the buffeting noise can be significantly reduced if a dividing bar is installed at the sunroof. A further optimization study on the dividing bar demonstrates that the peak buffeting level can be reduced to 123dB for the selected vehicle if the dividing bar is installed at its optimal location, 65% of the total length from the front edge of the sunroof. The peak buffeting level can be further reduced to 100dB if the dividing bar takes its optimal width 80mm, 15% of the total length of the sunroof for this vehicle, while staying at its optimal location.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Numerical Evaluation of TRL Barrier’s Compatibility Assessment Capability

2006-04-03
2006-01-1133
Barrier impacts are routinely used to estimate the impact response of vehicles in vehicle-to-vehicle crashes. One area of investigation is the detection of the secondary energy absorbing structures provided for under-/over-ride mitigation as a result of increased structural engagement -- improved geometric compatibility. The flat rigid barrier and the Transportation Research Laboratory’s (TRL) full width honeycomb barrier are commonly considered. In the present study, a vehicle-to-vehicle impact that exhibited no under-/over-ride condition was compared to finite element analysis of vehicle impacts to the two different barriers in order to evaluate their ability to detect the secondary energy absorbing structure. This study demonstrates that the rigid barrier and the TRL barrier yield similar quantitative information with regard to vehicle-to-vehicle crashes.
Technical Paper

Optimization Study for Sunroof Buffeting Reduction

2006-04-03
2006-01-0138
This paper presents the results of optimization study for sunroof buffeting reduction using CFD technology. For an early prototype vehicle as a baseline model in this study a high level of sunroof buffeting 133dB has been found. The CFD simulation shows that the buffeting noise can be reduced by installing a wind deflector at its optimal angle 40 degrees from the upward vertical line. Further optimization study demonstrates that the buffeting peak SPL can be reduced to 97dB if the sunroof glass moves to its optimal position, 50% of the total length of the sunroof from the front edge. For any other vehicles, the optimization procedure is the same to get the optimal parameters. On the other hand, however, this optimization study is only based on fluid dynamics principle without considering manufacturability, styling, cost, etc. Further work is needed to utilize the results in the production design.
Technical Paper

Electromagnetic Compatibility of Direct Current Motors in an Automobile Environment

2005-04-11
2005-01-0637
As the volume and complexity of electronics increases in automobiles, so does the complexity of the electromagnetic relationship between systems. The reliability and functionality of electronic systems in automobiles can be affected by noise sources such as direct current (DC) motors. A typical automobile has 25 to 100+ DC motors performing different tasks. This paper investigates the noise environment due to DC motors found in automobiles and the requirements that automobile manufacturers impose to suppress RF electromagnetic noise and conducted transients.
Technical Paper

Damped Accelerometers and Their Use in Vehicle Crash Testing

2005-04-11
2005-01-0746
At one time it was considered imperative to collect high frequency accelerometer data for accurate analysis. As a result current FMVSS regulations and SAE J2570 require the use of accelerometers with damping ratio of 0.05 or less (designated as undamped). This prevents the use of damped accelerometers for regulated channels. Damped accelerometers can provide comparable data and in some cases better data than undamped accelerometers, as long as they meet specific minimum requirements. To collect the most useful data, damped accelerometers should be added to the tool box of transducers used by crash test facilities.
Technical Paper

A Finite Element Model of the TRL Honeycomb Barrier for Compatibility Studies

2005-04-11
2005-01-1352
A finite element model of the Transport Research Laboratory (TRL) honeycomb barrier, which is being proposed for use in vehicle compatibility studies, has been developed for use in LSDYNA. The model employs penalty parameters to enforce continuity between adjacent finite elements of the honeycomb barrier. Results of impact tests with indentors of various shapes and sizes were used to verify the performance of the computational model. Numerical simulations show reasonably good agreement with the test results.
Technical Paper

Effects of Roller Geometry on Contact Pressure and Residual Stress in Crankshaft Fillet Rolling

2005-04-11
2005-01-1908
In this paper, the effects of roller geometry on contact pressure and residual stress in crankshaft fillet rolling are investigated by a two-dimensional finite element analysis. The fillet rolling process is first introduced to review some characteristics of the rolling tools. A two-dimensional plane strain finite element analysis is then employed to qualitatively investigate the influence of the roller geometry. Computations have been conducted for eight different contact geometries between the primary roller and the secondary roller to investigate the geometry effect on the contact pressure distribution on the edge of the primary roller. Fatigue parameters of the primary rollers are also estimated based on the Findley fatigue theory. Then, computations have been conducted for three different contact geometries between the primary roller and the crankshaft fillet to investigate the geometry effect on the residual stress distribution near the crankshaft fillet.
Technical Paper

Engine Cambore Distortion Analysis From Design to Manufacturing

2004-03-08
2004-01-1449
The cambore distortion is one of major concerns of an engine performance. A good design does not ensure a quality product. To meet product performance requirements, engineering community turns efforts to both design and manufacturing at an early stage of product development. This paper will discuss this process by providing an example of design and manufacturing of an overhead cambore. In this study a methodology to evaluate bore distortions is introduced. FEA cambore distortion analysis will use it to provide necessary data so that the product team can make a sound decision.
Technical Paper

Fatigue Failure of Rollers in Crankshaft Fillet Rolling

2004-03-08
2004-01-1498
In this paper, the fatigue failure of the primary roller used in a crankshaft fillet rolling process is investigated by a failure analysis and a two-dimensional finite element analysis. The fillet rolling process is first discussed to introduce the important parameters that influence the fatigue life of the primary roller. The cross sections of failed primary rollers are then examined by an optical microscope and a Scanning Electron Microscope (SEM) to understand the microscopic characteristics of the fatigue failure process. A two-dimensional plane strain finite element analysis is employed to qualitatively investigate the influences of the contact geometry on the contact pressure distribution and the Mises stress distribution near the contact area. Fatigue parameters of the primary rollers are then estimated based on the Findley fatigue theory.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Digital Filtering for J211 Requirements using a Fast Fourier Transform Based Filter

2002-03-04
2002-01-0796
The need for low pass filters stems from a need to eliminate high frequency noise from raw data (the output of the data acquisition system). As an example, consider the frame of a vehicle used in a crash test. The frame will exhibit high frequency vibrations, which do not affect the vehicles movement in space. The use of filters has since been expanded to include such things as the calculation of potential injury. Phaseless filters are now required for all FMVSS-208 injury calculations (see references). A single filter formula can not allow all test facilities to comply with the J211 CFC corridors. Even the SAE J211 recommended Butterworth filter may not comply with the J211 requirements. A new, universal, filtering system is required to harmonize the data processing at all testing facilities. The use of Fourier series for filtering provides a very powerful, yet overlooked, solution to today's filtering problems.
Technical Paper

Predicted vs. Actual Compensation in a Stamping Die

2001-10-16
2001-01-3108
Traditional methods used to produce a die set (from developing initial machining cutter paths through finalized die tryout to produce a part that meets design intent) begin with draw simulation and development. It is here, traditionally, that scientific evaluation of actual metal stretch and theoretical ideals end. In past programs, a designed part would be simulated for stretch and a development model created to include various die compensations (i.e. springback, overcrown, etc.) based on past experience for area and amount. At this point, the die is cut and undergoes a metamorphosis through die tryout to finally produce a quality part. This is currently an open loop system. This paper will focus on the differences in the predicted way the die should look and the actual outcome (after part buyoff).
Technical Paper

Errors in the Driveline System Balancing Process

2001-04-30
2001-01-1504
Single-plane balancing is a very well-understood process, whereby an imbalance vector is determined and then opposed by a similar vector of equal magnitude but 180° out of phase. This is used in many situations to improve machine performance, vibration, noise etc. However, there is inherent in this process a sensitivity to errors of measurement and correction, since a large imbalance vector and the equally large correction vector must be of exactly equal magnitude and exactly 180° apart for perfect balance. This paper examines the effect of errors in measurement of the initial imbalance and correction of it on the residual balance of automotive drivelines. In particular, it examines the effects of the errors present in a system whereby a system balance correction is made, on a driveline assembly, at discrete points around a given plane (at bolt locations). Errors occur in measurement of vibration, in calculating correction masses and in applying those correction masses.
Technical Paper

Determination of the noise contributions of engine surfaces

2001-04-30
2001-01-1482
One of the key elements in efforts to minimize the noise emmissionis of engines and other machinery is the knowledge of the main noise radiating surfaces and the relation between measurable surface vibration and the sound pressure. Under the name of Airborne Source Quantification (ASQ), various techniques have been developed to discretize and quantify the source strength, and noise contributions, of vibrating surface patches of machinery or vehicle components. The noise contributions of patches to the sound pressure at specific locations in the sound field or to the total radiated sound power are identified. The source strength of equivalent point sources, the acoustic transfer from the source surface to critical sound field locations and finally the sound pressure contributions of the individual patches are quantified. These techniques are not unique to engine application, but very relevant for engine development. An example is shown for an engine under artificial excitation.
Technical Paper

Test Based Methods for High Frequency Structureborne Noise

2001-04-30
2001-01-1523
NVH engineers typically are dealing with issues that relate to shake, harshness and low frequency noise and vibration concerns. However there is a greater importance being placed on dealing with high frequency structureborne noise problems which are related to gear meshing forces and drivetrain dynamics. This paper presents a case study of a high frequency structureborne noise problem. The objective of the paper is to show the application and effectiveness of using various testing based techniques such as Transfer Path, Running modes, and Mobility analysis along with acoustic excited operating deflection shapes for solving these problems in a timely and effective manner.
Technical Paper

Development of an Air Intake System Using Vibro-Acoustics Numerical Modeling

2001-04-30
2001-01-1519
This paper describes the use of Vibro-Acoustics numerical modeling for prediction of an Air Intake System noise level for a commercial vehicle. The use of numerical methods to predict vehicle interior noise levels as well as sound radiated from components is gaining acceptance in the automotive industry [1]. The products of most industries can benefit from improved acoustic design. On the other hand, sound emission regulation has become more and more rigorous and customers expect quieter products. The aim of this work it is to assess the Vibro-Acoustics behavior of Air Intake System and influence of it in the sound pressure level of the vehicle.
Technical Paper

Active Boom Noise Damping of Dodge Durango

2001-04-30
2001-01-1614
Two active boom noise damping techniques using a Helmholtz resonator-based compensator and a lead compensator called a positive pressure feedback have been developed at the University of Dayton [1]. The two damping techniques are of feedback type and their compensators can be implemented in software or hardware (using inexpensive operational amplifiers). The active damping system would rely on a speaker, a low-cost microphone, two accelerometers, and an electronic circuit (or a micro-controller) to add damping to the offending low-frequency vibroacoustic modes of the cavity. The simplicity of the active boom noise damping system lends itself to be incorporated into a vehicle's sound system. The Helmholtz resonator-based strategy is implemented on a Dodge Durango sport utility vehicle. The control scheme adds appreciable amount of damping to the first cavity mode and the first structurally induced acoustic mode of the cabin.
Technical Paper

Engine Internal Dynamic Force Identification and the Combination with Engine Structural and Vibro-Acoustic Transfer Information

2001-04-30
2001-01-1596
The vibration-generating mechanisms inside an engine are highly non-linear (combustion, valve operation, hydraulic bearing behavior, etc.). However, the engine structure, under the influence of these vibration-generating mechanisms, responds in a highly linear way. For the development and optimization of the engine structure for noise and vibration it is beneficial to use fast and ‘simple’ linear models, like linear FE-models, measured modal models or measured FRF-models. All these models allow a qualitative assessment of variants without excitation information. But, for true optimization, internal excitation spectra are needed in order to avoid that effort is spent to optimize non-critical system properties. Unfortunately, these internal excitation spectra are difficult to measure. Direct measurement of combustion pressure is still feasible, but crank-bearing forces, piston guidance forces etc. can only be identified indirectly.
X