Refine Your Search

Topic

Author

Search Results

Technical Paper

High-Porosity Honeycomb Substrate with Thin-Wall and High Cell Density Using for SCR Coating to Meet Worldwide Tighter Emission Regulations

2022-03-29
2022-01-0550
Selective catalyst reduction (SCR) using cordierite honeycomb substrate is generally used as a DeNOx catalyst for diesel engines exhaust in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. Worldwide NOx emission regulations will become stricter, as represented by CARB2027 and EuroVII. Technologies which can achieve further lower NOx emissions are required. Recently, several technologies, like increased SCR catalyst loading amount on honeycomb substrates, and additional SCR catalyst volume in positions closer to the engine are being considered to achieve ultra-low NOx emissions. However, undesirable pressure drop increase and enlarging after treatment systems will be caused by adopting these technologies. Therefore, optimization of the material and honeycomb cell structure for SCR is inevitable to achieve ultra-low NOx emissions, while minimizing any system drawbacks.
Technical Paper

Achieving SULEV30 Regulation Requirement with Three-Way Catalyst on High Porosity Substrate while Reducing Platinum Group Metal Loading

2022-03-29
2022-01-0543
Fleet average SULEV30 emissions over FTP-75 must be met under full implementation of US Tier 3/LEV III emission regulation in 2025. The majority of SULEV30 certified 2021 model year vehicles are equipped with ≤ 2L displacement engines and some models adopt hybrid powertrain systems. Pickup trucks account for > 20% of passenger vehicles in the US. They could represent a quick route to meet fleet average SULEV30 targets. The newest pickup truck models are typically ULEV50 or ULEV70 certified. To reach SULEV30 or lower emission category, total tailpipe emissions must be reduced by more than 40%. Improvement of cold start emission is essential because over 70% of regulated emission is emitted during the first 60 seconds of a drive cycle with current engine and aftertreatment technology. High porosity (HP) ceramic substrate is designed to reduce thermal mass and time required to reach three-way catalyst (TWC) active temperature compared to conventional ceramic substrates.
Journal Article

Development of a Ceramic EHC

2022-03-29
2022-01-0536
In recent years, electrically heated catalysts (EHCs) have been developed to achieve lower emissions. In several EHC heating methods, the direct heating method, which an electric current is applied directly to the catalyst substrate, can easily activate the catalyst before engine start-up. The research results reported on the use of the direct heating EHC to achieve significant exhaust gas purification during cold start-up [1]. From the perspective of catalyst loading, ceramics is considered to be a better material for the substrate than metal due to the difference in coefficient of thermal expansion between the catalyst and the substrate, but the EHC made of ceramics has difficulties such as controllability of the current distribution, durability and reliability of the connection between the substrate and the electrodes.
Technical Paper

Evaluation of Hydrothermally Aged Vanadia SCR on High-Porosity Substrate

2016-10-17
2016-01-2320
Ammonia Selective Catalytic Reduction (SCR) is adapted for a variety of applications to control nitrogen oxides (NOx) in diesel engine exhaust. The most commonly used catalyst for SCR in established markets is Cu-Zeolite (CuZ) due to excellent NOx conversion and thermal durability. However, most applications in emerging markets and certain applications in established markets utilize vanadia SCR. The operating temperature is typically maintained below 550°C to avoid vanadium sublimation due to active regeneration of the diesel particulate filter (DPF), or some OEMs may eliminate the DPF because they can achieve particulate matter (PM) standard with engine tuning. Further improvement of vanadia SCR durability and NOx conversion at low exhaust gas temperatures will be required in consideration of future emission standards.
Technical Paper

High-Porosity Cordierite Honeycomb Substrate Design Parameter Study in Combination with Vanadia SCR

2016-04-05
2016-01-0949
Ammonia Selective Catalytic Reduction (SCR) is a key emission control component utilized in diesel engine applications for NOx reduction. There are several types of SCR catalyst currently in the market: Cu-Zeolite, Fe-Zeolite and Vanadia. Diesel vehicle and engine manufacturers down select their production SCR catalyst primarily based on vehicle exhaust gas temperature operation, ammonia dosing strategy, fuel quality, packaging envelope and cost. For Vanadia SCR, the operating temperature is normally controlled below 550oC to avoid vanadium sublimation. In emerging markets, the Vanadia SCR is typically installed alone or downstream of the DOC with low exhaust gas temperature exposure. Vanadia SCR is also utilized in some European applications with passive DPF soot regeneration. However, further improvement of Vanadia SCR NOx conversion at low exhaust gas temperatures will be required to meet future emission regulations (i.e.: HDD Phase 2 GHG).
Journal Article

Development of High Porosity Cordierite Honeycomb Substrate for SCR Application to Realize High NOx Conversion Efficiency and System Compactness

2014-04-01
2014-01-1528
Today the Ammonia Selective Catalytic Reduction (SCR) system with good NOx conversion is the emission technology of choice for diesel engines globally. High NOx conversion SCR systems combined with optimized engine calibration not only address the stringent NOx emission limits which have been introduced or are being considered for later this decade, but also reduce CO2 emissions required by government regulations and the increase in fuel economy required by end-users. Reducing the packaging envelope of today's SCR systems, while retaining or improving NOx conversion and pressure drop, is a key customer demand. High SCR loadings ensure high NOx conversion at very low temperatures. To meet this performance requirement, a High Porosity Substrate which minimizes the pressure drop impact, was introduced in SAE Paper 2012-01-1079 [1], [2], [3].
Technical Paper

Studies of Diesel Particulate Filter Performances by a Diesel Engine Simulator

2010-04-12
2010-01-0813
To evaluate various Diesel Particulate Filter (DPF) efficiently, accelerated tests are one of effective methods. In this study, a simulator composed by diesel fuel burners is proposed for fundamental DPF evaluations. Firstly particle size distribution measurement, chemical composition and thermal analysis were carried out for the particulate matter (PM) generated by the simulator with several combustion conditions. The PMs generated by specific conditions showed similar characteristics to PMs of a diesel engine. Through these investigations, mechanism of PM particle growth was discussed. Secondly diversified DPFs were subjected to accelerated pressure drop and filtration efficiency tests. Features of DPFs could be clarified by the accelerated tests. In addition, the correlation between DPF pressure drop performance and PM characteristics was discussed. Thirdly regeneration performance of the simulator's PM was investigated.
Technical Paper

Performance Verification of Next Generation Diesel Particulate Filter

2010-04-12
2010-01-0531
The Inlet-Membrane DPF which has a small pore size membrane formed on the inlet side of the body wall has been developed as a next generation diesel particulate filter (DPF). It simultaneously realizes low pressure drop, small pressure drop hysteresis, high robustness and high filtration efficiency. The low pressure drop improves fuel economy. The small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between the pressure drop and accumulated soot mass improves the accuracy of the soot mass detection by means of the pressure drop values. The Inlet-Membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performances was evaluated using full block samples in 2009.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Technical Paper

Real-Time Estimation of the Exhaust Gas Recirculation Ratio Based on Cylinder Pressure Signals

2007-04-16
2007-01-0493
External Exhaust Gas Recirculation, EGR, is a central issue in controlling emissions in up-to-date diesel engines. An empirical model has been developed that calculates the EGR ratio as a function of the engine speed, the engine load and special characteristics of the heat release rate. It was found that three combustion characteristics correlate well with the EGR ratio. These characteristics are the ignition delay, the premixed combustion ratio and the mixing-controlled combustion ratio. The calculation of these characteristics is based on parameter subsets, which were determined using an optimization routine. The model presented was developed based on these optimized characteristics.
Technical Paper

Simulation Of NOx Storage and Reduction Catalyst: Model Development And Application

2007-04-16
2007-01-1117
To fulfill future emission standards for diesel engines, combined after-treatment systems consisting of different catalyst technologies and diesel particulate filters (DPF) are necessary. For designing and optimizing the resulting systems of considerable complexity, effective simulation models of different catalyst and DPF technologies have been developed and integrated into a common simulation environment called ExACT (Exhaust After-treatment Components Toolbox). This publication focuses on a model for the NOx storage and reduction catalyst as a part of that simulation environment. A heterogeneous, spatially one-dimensional (1D), physically and chemically based mathematical model of the catalytic monolith has been developed. A global reaction kinetic approach has been chosen to describe reaction conversions on the washcoat. Reaction kinetic parameters have been evaluated from a series of laboratory experiments.
Technical Paper

Numerical Simulation of Zeolite- and V-Based SCR Catalytic Converters

2007-04-16
2007-01-1136
A numerical model describing the ammonia based SCR process of NOX on zeolite catalysts is presented. The model is able to simulate coated and extruded monoliths. The development of the reaction kinetics is based on a study which compares the activity of zeolite and vanadium based catalysts. This study was conducted in a microreactor loaded with washcoat powder and with crushed coated monoliths. A model for the SCR reaction kinetics on zeolite catalysts is presented. After the parameterization of the reaction mechanism the reaction kinetics were coupled with models for heat and mass transport. The model is validated with laboratory data and engine test bench measurement data over washcoated monolith catalysts. A numerical simulation study is presented, aiming to reveal the differences between zeolite and vanadium based SCR catalysts.
Technical Paper

HSDI Diesel Engine Optimisation for GTL Diesel Fuel

2007-01-23
2007-01-0027
A Mercedes E320 CDI vehicle has been modified for more optimal operation on Gas-To-Liquids (GTL) diesel fuel, in order to demonstrate the extent of exhaust emission reductions which are enabled by the properties of this fuel. The engine hardware changes employed comprised the fitment of re-specified fuel injectors and the reduction of the compression ratio from 18:1 to 15:1, as well as a re-optimisation of the software calibration. The demonstration vehicle has achieved a NOx emission of less that 0.08 g/km in the NEDC test cycle, while all other regulated emissions still meet the Euro 4 limits, as well as those currently proposed for Euro 5. CO2 emissions and fuel consumption, were not degraded with the optimised engine. This was achieved whilst employing only cost-neutral engine modifications, and with the standard vehicle exhaust system (oxidation catalyst and diesel particulate filter) fitted.
Technical Paper

Evaluation of Advanced Diesel Oxidation Catalyst Concepts: Part 2

2006-04-03
2006-01-0032
The development of diesel powered passenger cars is driven by the enhanced emission legislation. To fulfill the future emission limits there is a need for advanced aftertreatment devices. A comprehensive study was carried out focusing on the improvement of the DOC as one part of these systems, concerning high HC/CO conversion rates, low temperature light-off behaviour and high temperature aging stability, respectively. The first part of this study was published in [1]. Further evaluations using a high temperature DPF aging were carried out for the introduced systems. Again the substrate geometry and the catalytic coating were varied. The results from engine as well as vehicle tests show advantages in a highly systematic context by changing either geometrical or chemical factors. These results enable further improvement for the design of the exhaust system to pass the demanding emission legislation for high performance diesel powered passenger cars.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Numerical Simulation of NO/NO2/NH3 Reactions on SCR-Catalytic Converters:Model Development and Applications

2006-04-03
2006-01-0468
A 1D+1D numerical model describing the ammonia based SCR process of NO and NO2 on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. Basing on a fundamental investigation of the catalytic processes a reaction mechanism for the NO/NO2 - NH3 reacting system is proposed and modeled. After the parameterization of the reaction mechanism the reaction kinetics have been coupled with models for heat and mass transport. Model validation has been performed with engine test bench experiments. Finally the model has been applied to study the influence of NO2 on SCR efficiency within ETC and ESC testcycles, Additional simulations have been conducted to identify the potential for catalyst volume reduction if NO2 is present in the inlet feed.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Numerical Simulation of Ammonia SCR-Catalytic Converters: Model Development and Application

2005-04-11
2005-01-0965
A two-dimensional numerical model describing the ammonia based SCR-process on vanadia-titania catalysts is presented. The model is able to simulate coated and extruded monoliths. For the determination of the intrinsic kinetics of the various NH3-NOx reactions, unsteady microreactor experiments were used. In order to account for the influence of transport effects the kinetics were coupled with a fully transient two-phase 1D+1D monolith channel model. The model has been validated extensively with laboratory data and engine test bench measurements. After validation the model has been applied to calculate catalyst NOx conversion maps, which were used to define catalyst sizes. Additional simulations were conducted studying the influence of cell density and NH3-dosage ratio.
Technical Paper

Deactivation of TWC as a Function of Oil Ash Accumulation - A Parameter Study

2005-04-11
2005-01-1097
The oil ash accumulation on modern three way catalyst (TWC) as well as its influence on catalyst deactivation is evaluated as a parameter of oil consumption, kind of oil additive compound and additive concentration. The oil ash accumulation is characterized by XRF and SEM/EDX in axial direction and into the washcoat depth of the catalyst. The deposition patterns of Ca, Mg, P and Zn are discussed. The catalytic activity of the vehicle and engine bench aged catalysts is measured by performing model gas tests and vehicle tests, respectively. The influence of oil ash accumulation on the lifetime emission behavior of the vehicle is discussed.
Technical Paper

Reaction and Diffusion Phenomena in Catalyzed Diesel Particulate Filters

2004-03-08
2004-01-0696
The objective of this study is to explain the physical and chemical mechanisms involved in the operation of a catalyzed diesel particulate filter. The study emphasizes on the coupling between reaction and diffusion phenomena (with emphasis on NO2 “back-diffusion”), based on modeling and experimental data obtained on the engine dynamometer. The study is facilitated by a novel multi-dimensional mathematical model able to predict both reaction and diffusion phenomena in the filter channels and through the soot layer and wall. The model is thus able to predict the species concentration gradients in the inlet/outlet channels, in the soot layer and wall, taking into account the effect of NO2 back diffusion. The model is validated versus engine dyno measurements. Two sets of measurements are employed corresponding to low-temperature “controlled” regenerations as well as high-temperature “uncontrolled” conditions.
X