Refine Your Search

Topic

Author

Search Results

Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Technical Paper

Drivetrain Pressure Spike Evaluation Methodology & Optimization: Simulation and Testing Correlation

2024-01-16
2024-26-0277
This paper presents a virtual analysis method for pressure spike estimation and optimization of hydraulic system architecture for off-highway applications with hydraulically actuated clutch. This pressure spike leads to a very high torque spike in driveline components during clutch pop-up conditions in puddling operations. These torque spikes lead to potential failure of driveline components i.e., gear, shaft, bearing and torsional damper during sudden engagement events. To assess the hydraulic system performance during clutch pop-up cornering conditions is very challenging and leads to compromise on operator safety in the paddy field. It is essential to develop a simulation methodology in a virtual environment to understand the system behavior during clutch pop-up condition and impact of various hydraulic system parameters. This paper describes a Model Based System Design (MBSD) approach for understanding hydraulic system pressure spike phenomenon and dynamic response.
Technical Paper

Prediction, Validation, and Improvement of Panel Sound Transmission Loss of Agricultural Equipment Cab

2023-05-08
2023-01-1111
A typical cab used on agriculture machines is made up of a metal frame structure with large enclosing panels of glass, plastic, and metal. Acoustic treatments such as coatings, textiles and foams are used within the cab for aesthetics but also to mediate undesired noise. To develop effective designs for the cab to combat noise, accurate tools for measurement, and predictive methods for sound transmission loss are needed. This paper focuses on Sound Transmission Loss (STL) of the rear upper panel of a cab used in agriculture machines. Results from CAE based tools such as Statistical Energy Analysis (SEA), Finite Element Analysis (FEA) and Hybrid FE-SEA methods are compared to measurements. The panel studied included features such as curvature, deep drawn beads with a glass window and a damping coating. The simulation results are refined by incorporating methods for accurate modeling of ribs stiffness, curvature effect and radiation efficiency by synthetic modal approach.
Technical Paper

Ducted Fuel Injection: An Experimental Study on Optimal Duct Size

2022-03-29
2022-01-0450
Ducted fuel injection (DFI), a concept that utilizes fuel injection through ducts, was implemented in a constant pressure High Temperature Pressure Vessel at 60 bar ambient pressure, 800-1000 K ambient temperature, and 21 % oxygen. The ducts were 14 mm long and placed 3-4.7 mm from the orifice exit. The duct diameters ranged from 1.6-3.2 mm and had a rounded inlet and a tapered outlet. Diesel fuel was used in single-orifice fuel injectors operating at 250 MPa rail pressure. The objective of this work was to study soot reduction for various combinations of orifice and duct diameters. A complete data set was taken using the 150 μm orifice. A smaller data set was acquired for a 219 μm orifice, showing similar trends. Soot reduction peaked at an optimal duct diameter of 2-2.25 mm, corresponding to an 85-90 % spray area reduction for the 150 μm orifice. Smaller or larger duct diameters were less effective. Duct diameter had a minimal effect on ignition delay.
Technical Paper

Automotive RADAR Sensor Modeling with Multi-Scale Electromagnetic Field Solvers

2022-03-29
2022-01-0075
RADAR Sensors are going to be an integral part of autonomous vehicles. One of the main objectives of these sensors in autonomous vehicles is to get the Doppler range profile for surrounding traffic. In this paper, we use a similar RADAR for ground speed sensing in the off-highway scenario. There are several challenges in integrating the RADAR sensor with vehicles such as sensor position from ground, location on vehicle, electromagnetic interference with other electronic devices, enclosure design etc. Ground conditions and properties are also critical in the off-highway scenario for speed sensing. We propose to use the physics based electromagnetic field solvers to understand and mitigate some of these challenges and speed up the design. Electromagnetic field solvers tend to scale poorly with distance of propagation, especially in 3D modeling.
Technical Paper

Evolution and Redistribution of Residual Stress in Welded Plates During Fatigue Loading

2022-03-29
2022-01-0257
The presence of residual stresses affects the fatigue response of welded components. In the present study of thick welded cantilever specimens, residual stresses were measured in two A36 steel samples, one in the as-welded condition, and one subjected to a short history of bending loads where substantial local plasticity is expected at the fatigue hot-spot weld toe. Extensive X-Ray Diffraction (XRD) measurements describe the residual stress state in a large region above the weld toe both in an untested as-welded sample and in a sample subjected to a short load history that generated an estimated 0.01 strain amplitude at the stress concentration zone at the weld toe. The results show that such a test will significantly alter the welding-induced residual stresses. Fatigue life prediction methods need to be aware that such alterations are possible and incorporate the effects of such cyclic stress relaxation in life computations.
Technical Paper

Pass by Noise Analysis Method Extended for Mitigation Solution Development on Earth Moving Machinery

2021-08-31
2021-01-1071
Pass-by/exterior noise of earth moving machines (EMM) and forestry machines is becoming a focus at early product development stages. ISO 6395 (2) or EC/2000/14 (1) standards defines exterior noise test procedure for EMM. However, these standards do not provide insights for diagnosing any noise issues which may arise. The analysis challenges are posed by the moving machine and acoustic sources with respect to the stationary hemisphere target microphone on the ground and changing operating condition of sources as function of time. There is need to develop a seamless methodology to identify acoustic sources, quantify respective source strengths and rank partial contributions from each source to the total target microphone response in order to overcome the aforementioned challenges.
Technical Paper

Command Arm Vibration Reduction for Golf Mowing Machine

2021-08-31
2021-01-1107
The demands on improving the noise, vibration and harshness of the golf mowing machines are growing rapidly. Low frequency vibrations at the human touchpoints are one of the important factors leading to the discomfort of operators on these machines. In the present work, low frequency vibrations experienced by the operator of the golf mowing machine are reduced using finite element analysis (FEA) and validated by a physical test. Initially, testing observed high vibration at the command arm, where some of the operating controls are placed. FEA was carried out on a frame level assembly and the design was iterated to affect these vibration levels. The golf mowing machine considered in this work is powered by a gasoline engine, which is the source of excitation in the current scenario. The operational forces of the engine were measured by using blocked-force transfer path analysis at its mounts. The modal frequency response analysis used these calculated forces as an input excitation.
Technical Paper

Improved Method for Studying MCCI Flame Interactions with an Engine Combustion Chamber

2021-04-06
2021-01-0507
An improved method for studying mixing-controlled compression ignition (MCCI) flame interactions with an engine combustion chamber has been developed. It is implemented in a constant pressure vessel, which contains a portion of a piston and a portion of a cylinder head, where the cylinder head is emulated by a transparent fused silica window. This method allows for vaporizing or combusting fuel jets to be imaged from two orthogonal directions. The piston and cylinder head can be adjusted to emulate in-engine piston positions from top dead center (TDC) to approximately 15 mm away from TDC. The design allows for pistons from engine bore sizes up to approximately 175 mm to be studied, including the ability to simulate injector spray included angles from 120°-180°. In this study, the piston was made as an extruded piston bowl profile, where the length of the extrusion approximated the arc length between two neighboring jets from a 6-hole injector.
Technical Paper

Methods to Control Curing Induced Distortion in Hybrid Joining of Dissimilar Metals

2020-09-25
2020-28-0401
In lightweight structures with dissimilar metal designs, structural adhesive joining is a potential joining method. Adhesives help in reducing galvanic corrosion by minimizing physical contact between two dissimilar metals. Along with adhesives, fasteners are often used as a secondary joining method to hold the assembly together during adhesive curing. Therefore, a hybrid joint which is a combination of adhesives and mechanical fasteners is potential joining method to join dissimilar metals. However, when two dissimilar metals such as aluminum to steel are joined with hybrid joint by adhesive curing at elevated temperature, the distortion of assembly is observed when cooled at room temperature. This is due to the mismatch between coefficients of thermal expansion of aluminum vs steel. The adhesive may also experience residual stress and fracture. In this study, adhesive curing induced distortion is studied using 1.1 meter-long specimens of aluminum to steel hybrid joint assembly.
Technical Paper

Noise and Vibration Prediction and Validation for Off-Highway Vehicle Cab Using Hybrid FE-SEA Methodology

2019-06-05
2019-01-1479
Operator noise is an important aspect for noise and vibration of off-highway vehicles and a quieter cab is critical for the operator comfort. The noise level inside the cab is influenced by structural and acoustic transfer paths. In this paper, we used hybrid FE-SEA approach to consider both structural and acoustic transfer path as FEM and SEA methods individually face limitations in high and low frequencies respectively. A hybrid FE-SEA cab model was built to predict the structural and acoustic transfer functions. The analysis model was built with the systematic approach validated at each step with the laboratory test results. For the structural transfer function, structural excitations were applied at four cab mount locations and accelerations at various locations on the cab were validated. For the acoustic transfer function, the cab was excited with the volume velocity source inside the cab and sound power output of various panels were calculated and compared to the test results.
Technical Paper

Numerical Prediction and Verification of Noise Radiation Characteristics of Diesel Engine Block

2019-06-05
2019-01-1591
To assess the contribution of structure-borne noise from an engine, it is critical to characterize the dynamic and vibro-acoustic properties of the engine components and assembly. In this paper, a component level study of a three-cylinder diesel engine block is presented. Virtual analysis was done to predict the natural frequencies and mode shapes of an engine block in the first step. Then, these results were used to decide the optimum test locations and an experimental modal test was conducted on the engine block. The initial virtual model results for the natural frequencies and mode shapes were correlated with the results from test. Then, the virtual model was updated with the damping derived from experimental modal test to match the vibration frequency response functions. Further, the virtual model was used for prediction of vibro-acoustic transfer functions. The vibro-acoustic transfer functions were also obtained from test.
Technical Paper

Testing of Welded and Machined A36 Steel T-Joint Configuration Specimens

2019-04-02
2019-01-0535
For this latest SAE Fatigue Design and Evaluation project, fatigue tests were run by loading, in bending, both welded and machined T-Joint specimens that have the same geometry. The test rig setup consisted of a horizontally mounted actuator, with pinned joints at both ends, where the load is applied to the top of the vertical leg of the “upside down T” of a T-Joint specimen, while the horizontal legs of the “upside down T” were clamped to the bedplate. Specimens were tested until failure or until the specimen was unable to carry the commanded load. They were cycled under constant amplitude (at several load levels and R ratios), block cycle, and variable amplitude loadings. Welded and machined T-Joint specimens of the same geometry were included in the test plan such that fatigue life predictions could be compared to test lives for each case. Those comparisons would demonstrate the methodology’s relative predictive ability to manage welds, residual stress, etc...
Technical Paper

Comparison of Total Fatigue Life Predictions of Welded and Machined A36 Steel T-Joints

2019-04-02
2019-01-0527
A new total fatigue life methodology was utilized to make fatigue life predictions, where total fatigue life is defined as crack initiation and subsequent crack propagation to a crack of known size or the component’s inability to carry load. Fatigue life predictions of an A36 steel T-joint geometry were calculated using the same total fatigue life methodology for both welded and machined test specimens that have the same geometry. The only significant difference between the two analyses was the inclusion of the measured weld residual stresses in the welded specimen life predictions. Constant amplitude tests at several load levels and R ratios were analyzed along with block cycle and variable amplitude loading tests. The accuracy of the life predictions relative to experimental test lives was excellent, with most within a factor of +/- two.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

The Psychological and Statistical Design Method for Co-Creation HMI Applications in the Chinese Automotive Market

2017-03-28
2017-01-0650
The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
Technical Paper

A New Validation of Spray Penetration Models for Modern Heavy Duty Diesel Fuel Injectors

2017-03-28
2017-01-0826
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353μm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
Technical Paper

Autonomous Driving in Agriculture Leading to Autonomous Worksite Solutions

2016-09-27
2016-01-8006
A transformation of agriculture reached commercial reality at the beginning of this century as automated steering of agricultural machine systems increased the productivity and convenience in crop production systems. Following guidance, additional technologies have resulted in increasing optimized machine productivity. Today, integrated worksite solutions through machine and information management continues to transform agriculture. This is the precursor to autonomous worksite solutions that lead to the optimization of the worksite ecosystem. This paper will review the progress from the perspective of the customer value provided by increasing automated systems and the industry execution of autonomous driving technologies and will enable the pathways to autonomous worksites.
X