Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Effect of Using Exhaust Gas Recirculation (EGR) on the Emission Characteristics of the CI Engine Fuelled by Acetone-Butanol-Ethanol (ABE) Diesel Blends

2019-04-02
2019-01-0748
The power generation, agriculture, and transportation sectors are dominated by diesel engines due to better thermal efficiency and durability. Diesel engines are also a major contributor to the air pollutants such as NOx and particulate matter. Acetone-butanol-ethanol (ABE) is considered a promising alternative fuel as it emits less pollutants compared to conventional fuels. In current work, the ABE used was of the ratio (3:6:1) and four samples were prepared for engine trial ABE (10%90%diesel), ABE (20%80%diesel), ABE (30%70%diesel) and ABE (40%60%diesel). Their physio-chemical properties like kinematic viscosity, density, specific gravity and calorific value were checked and tested on compression ignition engine at different operating parameters. The experimental work was conducted upon Kirloskar 4-stroke single cylinder, vertical, air-cooled 661cc compression ignition engine at different speeds and loads.
Technical Paper

Transient Analysis of Natural Convection around a Pair of Circular Cylinders inside a Square Enclosure

2018-04-03
2018-01-0776
Heat exchangers are widely used in various transportation, industrial, or domestic applications such as thermal power plants, means of heating, transporting and air conditioning systems, electronic equipment and space vehicles. In all these applications improvements in the efficiency of the heat exchangers can lead to substantial cost, space and material savings. Hence considerable research work has been done in the past to seek effective ways to improve the efficiency of heat exchangers. In this paper the effect of natural convection is justified between exterior solid wall surfaces and the surrounding air inside the enclosure. Designing of electronic devices, heavy industrial equipments such as boilers, turbines etc. and building aerodynamics are some of the real world application associated with this study.
Technical Paper

A Study on the Application of Turbo Expansion in Light Duty Gasoline and Diesel Engines: A Review

2018-04-03
2018-01-0051
Turboexpansion is a concept which is aimed at reducing the fuel consumption of pressure-charged combustion engines by providing over-cooled air to the engine prior to its induction in the combustion chamber. The performance of the engine is dependent on intake charge density which is preferred to be high at reduced charge air temperature. This becomes achievable through a cooling system known as a turbo expander which expands a high-pressure gas to produce work that is usually employed to drive a compressor. Though, initially used for the purpose of refrigeration in industries, for the past few decades various researches have proved its efficiency in internal combustion engines. In gasoline engines, it is usually employed to extend the knock limit and reduce carbon emissions. Also, an extension to the knock limit allows several improvements in parameters such as increased specific output, an increase in compression ratio and a reduction in the fuel consumption of the engine.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Design and Simulated Analysis of Regenerative Suspension System with Hydraulic Cylinder, Motor and Dynamo

2017-03-28
2017-01-1284
With the ever increasing number of vehicles on road and the rise of the electric and automated vehicles, it is important to minimize the consumption of energy by each vehicle, regenerative braking is in wide use today, however, the research in the field of regenerative suspension is limited. The regenerative suspension has huge capabilities in power generation especially on third world roads having rather bumpy rides. A huge amounts of energy is wasted in shock absorbers due to friction. This study emphasizes on the implementation of the energy present in the suspension system by replacing the Shock Absorber with a Energy transfer system Involving Hydraulic cylinder, Hydraulic Motor and Dynamo. The energy which is usually lost as heat due to friction in conventional Suspension is used to drive a dynamo through Hydraulic System designed in this paper and electricity is generated.
Technical Paper

A Study on Homogeneous Combustion in Porous Medium Internal Combustion Engine: A Review

2017-03-28
2017-01-0788
Rapid depletion in fuel resources owing to the low efficiency of current automobiles has been a major threat to future generations for fuel availability as well as environmental health. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous (NOx and CO) and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Homogeneous mixing of fuel and air in HCCI leads to cleaner combustion and lower emissions. Since peak temperatures are significantly lower than in typical SI engines, NOx levels and soot are reduced to some extent. Because of absence of complete homogeneous combustion but quasi homogeneous combustion present in HCCI, there is still a possibility of further reducing the emissions as well as enhancing the engine performance.
Technical Paper

Performance and Emission Characteristics of n-Butanol and Iso-Butanol Diesel Blend Comparison

2015-09-29
2015-01-2819
The growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion (LTC) and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
Technical Paper

Optimization Techniques to Improve the Efficiency of Regenerative (Magnetic) Braking Systems

2015-04-14
2015-01-1210
At present, vast numbers of problems are triggered due to growing global energy crisis and rising energy costs. Since, on-road vehicles constitute the majority share of transportation; any energy losses in them will have a direct effect on the overall global energy scenario. Most of the energy lost is dissipated from the exhaust, cooling, and lubrication systems, and, most importantly, in the braking system. About 6% of the total energy produced is lost with the airstream in form of heat energy when brakes are applied. Thus, various technological systems need to be developed to conserve energy by minimize energy losses while application of brakes. Regenerative Braking is one such system or an energy recovery mechanism causing the vehicle to decelerate by converting its kinetic energy into another form (usually electricity), which further can be used either immediately or stored until needed.
Technical Paper

Optimization Analysis of Injection Angle and Injector Nozzle of an Advanced Compressed Air Engine Kit

2015-04-14
2015-01-1678
Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
Technical Paper

Performance and Emission Analysis of a CI Engine in Dual Mode with CNG and Karanja Oil Methyl Ester

2014-09-30
2014-01-2327
Rapid depletion of fossil fuels is urgently demanding an extensive research work to find out the viable alternative fuel for meeting sustainable energy demand without any environmental impact. In the future, our energy systems will need to be renewable, sustainable, efficient, cost-effective, convenient and safe. Therefore, researchers has shown interest towards alternative fuels like vegetable oils, alcohols, LPG, CNG, Producer gas, biogas in order to substitute conventional fuel i.e. diesel used in compression ignition (CI) engine. However, studies have suggested that trans-esterified vegetable oils retain quite similar physico-chemical properties comparable to diesel. Besides having several advantages, its use is restricted due to higher emissions i.e. NOx, CO, HC and deposits due to improper combustion. Hence, there is a need of cleaner fuel for diesel engines for the forthcoming stringent emissions norms and the fossil depletion.
Technical Paper

Friction and Sliding Wear Characterization of Ion Chrome Coating

2014-04-01
2014-01-0946
The functions of a piston ring are to seal off the combustion pressure, to distribute and control the oil, to transfer heat and to stabilize the piston. Most piston rings and metallic sealing rings for modern application where running conditions are severe, require some form of coating to minimise abrasion and corrosion. The piston ring coating improves the life of engine as well as fuel efficiency. In this study, physical vapour deposition (ion chrome plating) was investigated; plates with similar composition as the piston ring material were prepared by the casting process using induction arc furnace and sand mould. Wear test of the coating was conducted on pin on disc machine under dry conditions. The wear rate was calculated using mass loss methods on an electronic balance having least count of 1× 10−4 g.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Performance and Emission Characteristics of Fish Oil Biodiesel and Diesel Blend in a Medium Capacity C.I. Engine Employing EGR

2013-04-08
2013-01-1040
Ever increasing consumption of fossil fuel and large scale deterioration of environment are mandating employment of renewable fuels. Researchers all over the world are experimenting on variety of alternative fuels for meeting future energy demands. Biodiesel is one of the most promising alternative fuels due to lower CO, HC and PM emissions. However, NOx emissions are increased in case of biodiesel in CI engine. The present study focuses on evaluation of performance and emission characteristics of a medium capacity diesel engine on blends of fish oil biodiesel and diesel blends employing EGR. Fish oil was transesterified with methyl alcohol to produce methyl ester. B20 blend of biodiesel was used since it balances the property differences with conventional diesel, e.g., performance, emission benefits and cost. Further, B20 blend can be used in automotive engines with no major modification. NOx formation takes place when combustion temperature is more than 2000K.
X