Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Transient Thermal Model Evaluation for Semiconductor Devices in Automotive Applications

Automotive Electronic Control Unit (ECU) has semiconductor devices performing various time dependent functions. It is essential to understand the transient thermal behavior of these devices for designing a reliable system. Detailed thermal model (DTM) is the need of the hour to understand the characteristics by performing a transient system level simulation. The information to build DTM is not readily available in the public domain due to intellectual property protection from the device suppliers. To overcome this, the present work showcases the procedure to develop Transient Thermal Network Model (TTNM) using resistance and capacitance values extracted from the impedance curve provided by the semiconductor manufacturer. TTNM model is developed for a typical DPAK and D2PAK device and validated by comparing impedance curve derived from simulation with datasheet.
Technical Paper

A Non Traditional Solution for High Vibration Connection Systems

As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts.
Technical Paper

Post-Molding Crosslinking of Polyethylene in Automotive Connection Systems

Twenty plies of low density polyethylene (LDPE) were stacked and irradiated with 200 kGy of 5 MeV electron beam. The plies were analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for crosslink density using melting point depression and equilibrium storage modulus respectively. Infra-red spectroscopic analysis was conducted to examine the samples for the presence of chemical modification. The thermal stability of the irradiated samples and an unexposed control was investigated using Thermogravimetric Analysis (TGA). Results were utilized in assessing the viability of crosslinking products after the molding process to produce articles with improved resistance to temperature.
Technical Paper

Integrated Front and Rear HVAC Unit

Vehicles with a large cabin volume incorporate two HVAC units to provide comfort to the front and rear cabin. Each HVAC unit can generate independent airflow volume, temperature, and airflow direction. A new HVAC unit was developed to achieve the performance and functionality of two HVAC units. A unique HVAC construction was used to achieve independent front and rear airflow volume, temperature, and airflow direction distribution. This integrated front and rear HVAC unit provides additional packaging space for other vehicle components and reduces the overall number of HVAC system components.
Technical Paper

Force Distribution on Catalysts During Converter Assembly

Thinwall substrates used in modern catalytic converters are more sensitive to assembly and operating forces. Various converter assembly processes are characterized using real time force transducer technology. The force distribution data from these assembly methods are presented. The analysis of this data leads to recommendations for packaging of converters depending on catalyst strength.