Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Influence of Active Chassis Systems on Vehicle Propensity to Maneuver-Induced Rollovers

2002-03-04
2002-01-0967
The purpose of this paper is to evaluate through simulations the effects of active chassis systems on vehicle propensity to rollover caused by aggressive handling maneuvers. A 16 degree-of-freedom computer model of a full vehicle is used for this purpose. It includes models of active chassis systems and the associated control algorithms, and allows for simulation of vehicle dynamic behavior under large roll angles. The controllable chassis systems considered in this investigation are active rear steer, brake based vehicle stability enhancement system and active anti-roll bar. The maneuvers used in simulation are the double lane change and the fishhook maneuvers with increasing steering amplitudes. The vehicle represents a midsize SUV with a marginal static stability factor of 1.09 and aggressive tires. The results of simulations demonstrate that the uncontrolled vehicle rolls over in both maneuvers when the steering angle is sufficiently large.
Technical Paper

Rollover Stability Index Including Effects of Suspension Design

2002-03-04
2002-01-0965
In this paper a simple yet insightful model to predict vehicle propensity to rollover is proposed, which includes the effects of suspension and tire compliance. The model uses only a few parameters, usually known at the design stage. The lateral accelerations at the rollover threshold predicted by the model are compared to the results of simulations, in which vehicles with the same static stability factor, but different suspension characteristics and payloads are subjected to roll-inducing handling maneuvers. The results of simulations correlate well with the predictions based on the proposed model. Design recommendations for passive suspensions, which would increase rollover stability are discussed.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

Near and Far-Side Adult Front Passenger Kinematics in a Vehicle Rollover

2001-03-05
2001-01-0176
In this study, U.S. accident data was analyzed to determine interior contacts and injuries for front-seated occupants in rollovers. The injury distribution for belted and unbelted, non-ejected drivers and right front passengers (RFP) was assessed for single-event accidents where the leading side of the vehicle rollover was either on the driver or passenger door. Drivers in a roll-left and RFP in roll-right rollovers were defined as near-side occupants, while drivers in roll-right and RFP in roll-left rollovers were defined as far-side occupants. Serious injuries (AIS 3+) were most common to the head and thorax for both the near and far-side occupants. However, serious spinal injuries were more frequent for the far-side occupants, where the source was most often coded as roof, windshield and interior.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Development of an Automotive Rollover Sensor

2000-05-01
2000-01-1651
It is estimated that in the United States, nearly one quarter of all fatal automobile accidents involve a vehicle rollover. [1] In order to reduce fatalities and serious injuries, it is desirable to develop a sensing system that can detect an imminent rollover condition with sufficient time to activate occupant safety protection devices. The goals of a Rollover Sensing Module (RSM) are; 1 To accurately estimate vehicle roll and pitch angles 2 To reliably predict in a timely manner an imminent rollover 3 To eliminate false activation of safety devices 4 To function properly during airborne conditions 5 To be as autonomous as possible, not requiring information from other vehicle subsystems.
X