Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Cavity Fill Balancing Technique for Rubber Injection Molding

2015-04-14
2015-01-0715
Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
Technical Paper

Paradox of Miniaturization Trend Versus Hybrid Electrical Vehicle Requirements

2012-10-02
2012-36-0262
In recent years, a number of key influences are contributing to accelerate technological innovation in the automotive industrial sector. Concerns about renewable energy resource, fossil-fuels crises and higher gasoline prices, global warming awareness and environmental impacts, scarcity of minerals/metals and electronics demands rising are some of the major challenges for vehicle automakers and their suppliers. The interest in alternative fuel vehicles, especially hybrid-electrical vehicles (HEV) or renewable energy power concepts for road vehicles has become intensified and represents a significant area of research and development in order to meet nowadays global demands. However because of Hybrid Vehicles unique Power Supply System the electrical/electronic architecture (E/E) is sophisticated, requesting more robust sealing and a particular wiring harness components, such as connector, terminals and cables.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Ignition Systems for Spray-Guided Stratified Combustion

2010-04-12
2010-01-0598
The success of stratified combustion is strongly determined by the injection and ignition system used. A large temporal and spatial variation of the main parameters - mixture composition and charge motion - in the vicinity of the spark location are driving the demands for significantly improved ignition systems. Besides the requirements for conventional homogeneous combustion systems higher ignition energy and breakdown voltage capability is needed. The spark location or spark plug gap itself has to be open and well accessible for the mixture to allow a successful flame kernel formation and growth into the stratified mixture regime, while being insensitive to potential interaction with liquid fuel droplets or even fuel film. For this purpose several different ignition concepts are currently being developed. The present article will give an ignition system overview for stratified combustion within Delphi Powertrain Systems.
Technical Paper

Palladium/Rhodium Dual-Catalyst LEV 2 and Bin 4 Close-Coupled Emission Solutions

2007-04-16
2007-01-1263
Dual-monolith catalyst systems containing Pd/Rh three-way catalysts (TWCs) provide effective emission solutions for LEV2/Bin 5 and Bin 4 close-coupled applications at low PGM loadings. These systems combine washcoat technology and PGM distribution for front and rear catalysts resulting in optimal hydrocarbon and NOx light-off and transient NOx control. The dual-catalyst [Pd/Rh + Pd/Rh] systems are characterized as a function of Pd-Rh content, PGM location, and catalyst technology for 4-cyl [close-coupled + underfloor] systems and 6-cyl close-coupled applications. The current Pd/Rh dual-catalyst converters significantly reduce NOx emissions compared to earlier [Pd + Pt/Rh] or [Pd + Pd/Rh] LEV/ULEV systems by utilizing uniform Rh distribution and new OSC materials. These new design strategies particularly impact NOx performance, especially during transient A/F excursions.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Fast Start-Up On-Board Gasoline Reformer for Near Zero Emissions in Spark-Ignition Engines

2002-03-04
2002-01-1011
This paper describes recent progress in our program to develop a gasoline-fueled vehicle with an on-board reformer to provide near-zero tailpipe emissions. An on-board reformer converts gasoline (or another hydrocarbon-containing fuel) into reformate, containing hydrogen (H2) and carbon monoxide (CO). Reformate has very wide combustion limits to enable SI engine operation under very dilute conditions (either ultra-lean or with heavy exhaust gas recirculation (EGR) concentrations). In previous publications, we have presented engine dynamometer results showing very low emissions with bottled reformate. This paper shows results from an engine linked to an experimental, fast start-up reformer. We present both performance data for the reformer as well as engine emissions and performance results. Program results continue to show an on-board reforming system to be an attractive option for providing near-zero tailpipe emissions to meet low emission standards.
Technical Paper

Dynamic EGR Estimation for Production Engine Control

2001-03-05
2001-01-0553
A dynamic EGR State Estimator (ESE) intended for production engine management systems (EMS) implementation is presented. It better describes the development of external exhaust gas recirculation (EGR) concentration at the engine intake ports during EGR transients than traditional models. The dynamics of EGR concentration time and spatial development in the intake manifold are described as a perfect mixing model in the intake manifold plenum volume and non-mixing plug flow in the intake manifold runners. The time scale of EGR transients precludes the use of traditional EGR measurement techniques for model verification. Instead a wide range air fuel (WRAF) sensor is used. Results are shown for a large variation in operating conditions and compared to the performance of a traditional model.
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Technical Paper

Maximum Electrical Energy Availability With Reasonable Components

2000-11-01
2000-01-C071
The electric power required in automotive systems is quickly reaching a level that significantly impacts costs and fuel consumption. This drives the need to reconsider an electric energy management function. Fast evolving factors such as increasing power usage, and stricter engine management and reliability requirements necessitate a global vehicle approach to energy management. Innovations such as new powernet concepts (42 volt or dual voltage systems), new component technologies (high-performance energy storage, high efficiency and controllable generators), and global electronic and software architecture concepts will enable this new energy management concept. This paper describes key issues to maximize energy availability with reasonable components.
Technical Paper

Development of a Non-Thermal Plasma Reactor Electrical Model for Optimum NOx Removal Performance

2000-10-16
2000-01-2893
A double dielectric barrier discharge reactor driven by an alternating voltage is a relatively simple approach to promote oxidation of NO to NO2 for subsequent reduction in a catalyst bed. The chemical performance of such a non-thermal plasma reactor is determined by its current and electric field behavior in the gap, and by the fraction of the current carried by electrons, because the key reactants which initiate the NO oxidation and accompanying chemical changes are produced there, mostly by electron impact. We have tried to determine by models and experiments the bounds on performance of double dielectric barrier reactors and guidelines for optimization. Models reported here predict chemical results from time-resolved applied voltage and series sense capacitor data.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

2000-08-21
2000-01-3088
With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.
Technical Paper

Analytical Solution for Heat Flow in Cylinder and Its Application in Calculating Converter Skin Temperature

2000-03-06
2000-01-0301
In the catalytic converter, the thermal conductivity of the insulation material (intumescent mat) placed between the ceramic catalyst and the metal shell is strongly dependent on the temperature, resulting in the solving of non-linear heat conduction equations. In this paper, the analytic solution for the steady heat flow in a cylinder with temperature dependent conductivity is given. Using this analytic solution for the mat and including convection and radiation at the converter skin, an analytical expression for calculating converter skin temperature is obtained. This expression can be easily incorporated in a Fortran code to calculate the temperatures.
Technical Paper

An Engine Coolant Temperature Model and Application for Cooling System Diagnosis

2000-03-06
2000-01-0939
A coolant temperature model of an internal combustion engine has been formulated to meet the new On-Board Diagnostics II (OBD II) requirement for coolant temperature rationality. The model utilizes information available within the production Engine Control Module (ECM). The temperature prediction capability has been tested for various “real-world” driving conditions and cycles along with regulated drive cycles. The model can be calibrated to find the appropriate timing for initiation of a diagnostic algorithm for engine cooling system and Coolant Temperature Sensor (CTS) faults. A diagnostic scheme has been developed to detect and isolate various types of cooling system failures using engine soak time information available from a low power timer in the ECM.
Technical Paper

Palladium and Platinum/Rhodium Dual-Catalyst Emission Solutions for Close-Coupled or Underfloor Applications

2000-03-06
2000-01-0860
Dual-brick catalyst systems containing Pd-only catalysts followed by Pt/Rh three-way catalysts (TWCs) are effective emission solutions for both close-coupled and underfloor LEV/ULEV applications due to optimal hydrocarbon light-off, NOx control, and balance of precious metal (PGM) usage. Dual-brick [Pd +Pt/Rh] systems on 3.8L V-6 LEV-calibrated vehicles were characterized as a function of PGM loading, catalyst technology, converter volumes, and substrate cell density. While hydrocarbon emissions improve with increasing Pd loading, decreasing the front catalyst volume at constant Pd content (resulting in higher Pd density) improved light-off emissions. Use of 600cpsi substrates improved underfloor NMHC emissions on a 3.8L vehicle by ∼ 6-10mg/mi compared to 400cpsi catalysts, and thus allowing reduction of catalyst volume while achieving ULEV emission levels without air addition.
Technical Paper

Design and Development of a Mechanical Variable Valve Actuation System

2000-03-06
2000-01-1221
Compromises inherent with fixed valve lift and event timing have prompted engine designers to consider Variable Valve Actuation (VVA) systems for many decades. In recent years, some relatively basic forms of VVA have been introduced into production engines. Greater performance and driveability expectations of customers, more stringent emission regulations set by government legislators, and the mutual desire for higher fuel economy are increasingly at odds. As a solution, many OEM companies are seriously considering large-scale application of higher function VVA mechanisms in their next generation vehicles. This paper describes the continuing development progress of a mechanical VVA system. Design features and operation of the mechanism are explained. Test results are presented in two sections: motored cylinder head test data focuses on VVA system friction, control system performance, valve lift and component stress.
Technical Paper

Evaluation of a Non-Thermal Plasma System for Remediation of NOx in Diesel Exhaust

1999-10-25
1999-01-3639
With ever more stringent CO2 emissions mandates, many automobile manufacturers are seeking the fuel economy benefits of diesel and lean-burn gasoline engines. At the same time the emissions standards that diesel and gasoline engines will have to meet in the next decade continue to reduce. Proposed solutions for meeting the stringent emissions standards all appear to have limitations, such as propensities to poisoning from sulfur, narrow operating temperature windows, and requirements for controls that give rapid rich excursions. Non-thermal plasma-catalyst systems have shown good performance in bench testing while being largely unaffected by these same issues. A two-stage system with a unique non-thermal plasma reactor combined with a zeolite-based catalyst has been constructed and shown to work over a wide temperature range.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
X