Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Fuel Effects on Ion Current in an HCCI Engine

2005-05-11
2005-01-2093
An interest in measuring ion current in Homogeneous Charge Compression Ignition (HCCI) engines arises when one wants to use a cheaper probe for feedback of the combustion timing than expensive piezo electric pressure transducers. However the location of the ion current probe, in this case a spark plug, is of importance for both signal strength and the crank angle position where the signal is obtained. Different fuels will probably affect the ion current in both signal strength and timing and this is the main interest of this investigation. The measurements were performed on a Scania D12 engine in single cylinder operation and ion current was measured at 7 locations simultaneously. By arranging this setup there was a possibility to investigate if the ion current signals from the different spark plug locations would correlate with the fact that, for this particular engine, the combustion starts at the walls and propagates towards the centre of the combustion chamber.
Technical Paper

Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle

2005-04-11
2005-01-0153
This study applies a state feedback based Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine. At speeds above 1500 rpm is the FTM's bandwidth broadened by using the VCR feature of this engine, according to a predefined map, which is a function of load and engine speed. Below 1500 rpm is the PID based CLCC using VCR applied instead of the FTM while slow cylinder balancing is effectuated by the FTM. Performance of the two CLCC controllers are evaluated during an European EC2000 drive cycle, while HC, CO and CO2 emissions are measured online by a Fast Response Infrared (FRI) emission equipment. A load and speed map calculated for an 1.6L Opel Astra is used to get reference values for the dynamometer speed and the load control. The drive cycle test is initiated from a hot engine and hence no cold start is included. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is utilized.
Technical Paper

Multiple Point Ion Current Diagnostics in an HCCI Engine

2004-03-08
2004-01-0934
Interest in ion current sensing for HCCI combustion arises when a feedback signal from some sort of combustion sensor is needed in order to determine the state of the combustion process. A previous study has revealed that ion current sensors in the form of spark plugs can be used instead of expensive piezoelectric transducers for HCCI combustion sensing. Sufficiently high ion current levels were achieved when using relatively rich mixtures diluted with EGR. The study also shows that it is not the actual dilution per se but the actual air/fuel equivalence ratio which is important for the signal level. Conclusions were made that it is possible to obtain information on combustion timing and oscillating wave phenomena from the measurements. However, the study showed that the ion current is local compared to the pressure which is global in the combustion chamber.
Technical Paper

Pressure Oscillations During Rapid HCCI Combustion

2003-10-27
2003-01-3217
This work has focused on studying the in-cylinder pressure fluctuations caused by rapid HCCI combustion and determine what they consist of. Inhomogeneous autoignition sets up pressure waves traversing the combustion chamber. These pressure waves induce high gas velocities which causes increased heat transfer to the walls or in worst case engine damage. In order to study the pressure fluctuations a number of pressure transducers were mounted in the combustion chamber. The multi transducer arrangement was such that six transducers were placed circumferentially, one placed near the centre and one at a slight offset in the combustion chamber. The fitting of six transducers circumferentially was enabled by a spacer design and the two top mounted transducers were fitted in a modified cylinder head. During testing a disc shaped combustion chamber was used. The results of the tests conducted were that the in-cylinder pressure experienced during rapid HCCI-combustion is inhomogeneous.
Technical Paper

Influence of Mixture Quality on Homogeneous Charge Compression Ignition

1998-10-19
982454
The major advantages with Homogeneous Charge Compression Ignition, HCCI, is high efficiency in combination with low NOx-emissions. The major drawback with HCCI is the problem to control the ignition timing over a wide load and speed range. Other drawbacks are the limitation in attainable IMEP and relativly high emissions of unburned hydrocarbons. But the use of Exhaust Gas Recycling (EGR) instead of only air, slows down the rate of combustion and makes it possible to use lower air/fuel ratio, which increases the attainable upper load limit. The influence of mixture quality was therefore experimentally investigated. The effects of different EGR rates, air/fuel ratios and inlet mixture temperatures were studied. The compression ratio was set to 18:1. The fuels used were iso-octane, ethanol and commercially available natural gas. The engine was operated naturally aspirated mode for all tests.
X