Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Atomization Model in Port Fuel Injection Spray for Numerical Simulation

2023-09-29
2023-32-0091
Computational Fluid Dynamics (CFD) simulation is widely used in the development and validation of automotive engine performance. In engine simulation, spray breakup submodels are important because spray atomization has a significant influence on mixture formation and the combustion process. However, no breakup models have been developed for the fuel spray with plate-type multi-hole nozzle installed in port fuel injection spark ignition (SI) engines. Therefore, the purpose of this study is to simulate spray formation in port fuel injection precisely. The authors proposed the heterogeneous sheet breakup model for gasoline spray injected from plate type multi-hole nozzle. The novel breakup model was developed by clarifying the phenomenological mechanism of the spray atomization process. In this paper, this model was improved in dispersion characteristics and evaluated by the comparison of the model calculation results with experimental data.
Technical Paper

Mixture Formation Process Analysis in Spray and Wall Impingement Spray under Evaporating Conditions for Direct injection S.I. engines

2023-09-29
2023-32-0015
In this study, the authors analyze the concentration distribution of an evaporative spray mixture with LIEF (Laser induced exciplex fluorescence) method, which is a type of optical measurement. LIEF method is one of the optical measurements for obtaining the spray concentration distribution for separating vapor/liquid phases based on the fluorescence characteristics. In this paper, a quantitative concentration distribution analysis method for wall impingement spray in heterogeneous temperature field has been proposed. Then, a series of experiments were performed in varying injection pressure and ambient density. As a result, a two-dimensional concentration distribution was obtained for the free spray and wall impingement spray.
Technical Paper

Effect of Different Hydrogen-CNG Supply Method on the Combustion and Emission Characteristics in a SI Engine

2023-09-29
2023-32-0048
The purpose of this study is to reduce cooling loss in gas engines using hydrogen. In this report, the effect of different hydrogen-CNG supply methods on combustion and exhaust characteristics of SI engine were investigated. As a result, the 13A-port-injection caused sharp heat release at hydrogen addition ratio (RH) of 20 %, with a maximum brake thermal efficiency of 27.5 %. Also, the hydrogen-port-injection promotes combustion above RH=40 % and reduces cooling loss, resulting in a maximum brake thermal efficiency of 31.0 % at RH=80 %, 1.8 pt higher than that of the 13A-port-injection.
Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 1: Research on Deposit Formation Mechanism)

2023-04-11
2023-01-0410
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. As CO2 emission has been reduced through electrification such as hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV), internal combustion engines (ICEs) equipped in those powertrain systems are still necessary for the foreseeable future, and continuous efforts to improve fuel efficiency are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been researched as a next generation of turbocharged gasoline engines. Further utilization of turbochargers is expected. Compared with turbocharged downsized gasoline engines available in the current market, much higher boost pressure must be utilized to realize the super lean-burn engines. As a result, compressor housing temperature will be very high compared with the current market one.
Technical Paper

Effect of Different Fuel Supply System on Combustion Characteristics in Hydrogen SI Engine

2022-01-09
2022-32-0092
In recent years, internal combustion engine using hydrogen gas, has attracted attention as one solution to the problem of global warming. Hydrogen gas has excellent combustion characteristics such as wide limits of inflammability and fast burning velocity because of high diffusion rate. Therefore, it has been made to obtain stable ignition and combustion by adding hydrogen with lean mixture in spark ignition engines using hydrocarbon fuels and to be attempted efficient operation by engine researchers. The purpose of this study is to reduce cooling loss in a gas engine using hydrogen gas and hydrogen Mixer system (Mixer) engine was remodeled to hydrogen Port Injection (PI) system engine. In this report, the heterogeneity of hydrogen mixture is clarified by comparing the combustion characteristics of the Mixer and the PI, and the effect of the difference in hydrogen supply systems on cooling loss is system. Ignition delay of the PI system is shorter than that of the Mixer.
Journal Article

Effect of Blended Fuel of Hydrotreated Vegetable Oil and Fatty Acid Methyl Ester on Spray and Combustion Characteristics

2022-01-09
2022-32-0073
Research on alternative fuels is necessary to reduce CO2 emissions. Hydrotreated Vegetable Oil (HVO) of light fuel physically improves spray and combustion characteristics. Fatty Acid Methyl Ester (FAME) is an oxygenated fuel and its combustion characteristics are chemically improved, although its spray characteristics such as penetration and atomization are deteriorated. The purpose of this study is to understand the effects of blending HVO, which has carbon neutral (CN) characteristics, with FAME, which also has CN characteristics, on spray and combustion characteristics, and to further improve emission such as THC and Smoke. This report presents the effect of the combination of improved spray characteristics and oxygenated fuel on emissions. Spray characteristics such as penetration, spray angle and spray volume were investigated by shadowgraph photography.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

System Architecture Design Suitable for Automated Driving Vehicle: Hardware Configuration and Software Architecture Design

2021-04-06
2021-01-0073
Our L2-automated driving system enabling a driver to take his/her hands off from the steering wheel is self-operating on a highway, allowing the vehicle to automatically change lanes and overtake slow-speed leading vehicles. It includes an OTA function, which can extend the ODD after the market launch. To realize these features in reasonably safer and more reliable ways, system architecture must be designed well under hardware and software implementation constraints. One such major constraint is the system must be designed to make the most out of the existing sensor configuration on the vehicle, where five peripheral radars and a front camera for ADAS as well as panoramic-view and rear-view cameras for monitoring are available. In addition, four LiDARs and a telephoto camera are newly adopted for ADS. Another constraint is the system must consist of reliable redundant components for fail-safe operation.
Technical Paper

Effect of Initial Fuel Temperature on Spray Characteristics of Multicomponent Fuel

2020-09-15
2020-01-2113
Fuel design concept has been proposed for low emission and combustion control in engine systems. In this concept, the multicomponent fuels, which are mixed with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components), are used for artificial control of fuel properties. In addition, these multicomponent fuels can easily lead to flash boiling which promote atomization and vaporization in the spray process. In order to understand atomization and vaporization process of multicomponent fuels in detail, the model for flash boiling spray of multicomponent fuel have been constructed and implemented into KIVA3V rel.2. This model considers the detailed physical properties and evaporation process of multicomponent fuel and the bubble nucleation, growth and disruption in a nozzle orifice and injected fuel droplets.
Technical Paper

Model Based Control for Premixed Charge Compression Ignition Diesel Engine

2020-04-14
2020-01-1150
Premixed charge compression ignition (PCCI) combustion is effective in reducing harmful exhaust gas and improving the fuel consumption of diesel engines [1]. However, PCCI combustion has a problem of exhibiting lower combustion stability than diffusive combustion [2, 3], which makes it challenging to apply to mass production engines. Its low combustion stability problem can be overcome by implementing complicated injection control strategies that account for variations in environmental and engine operating conditions as well as transient engine conditions, such as turbocharging delay, exhaust gas recirculation (EGR) delay, and intake air temperature delay. Although there is an example where the combustion mode is switched according to the intake O2 fraction [4], it requires a significant number of engineering-hours to calibrate multiple combustion modes. And besides, such switching combustion modes tends to have a risk of discontinuous combustion noise and torque.
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Study for Higher Efficiency and Lower Emissions in Turbo Charged Small Gas Engine Using Low Caloric Biomass Model Gas

2020-01-24
2019-32-0620
In recent years, depletion of energy resources and increasing CO2 emission have been concerned. As this solution, the use of biofuels from garbage is focused. In this research, higher efficiency and lower emissions in the gas engine for power generation using biomass gas are aimed. However, the biomass gas is low caloric value and the output is low and the combustion is unstable. Therefore, a turbocharged spark ignition gas engine is used as the test institution. As a result, it is found that combustion stability and high efficiency of biomass gas can be realized.
Technical Paper

A Study on Higher Thermal Efficiency and Lower Cooling Loss in Diesel Engine

2019-12-19
2019-01-2283
The purpose of this study is to achieve thermal efficiency improvement and cooling loss reduction of a diesel engine with a combustion concept of earlier evaporation, higher entrainment, and compact spray flame. In order to realize this concept, the paper focused on two-component fuel (nC5H12/nC10H22) with high evaporation. In this paper, the effects of two-component fuel on thermal efficiency and exhaust characteristics are examined by using single cylinder diesel engine. In addition, spray characteristics are revealed in an optically accessible chamber and combustion characteristics are revealed by using RCEM.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Investigation and Improvement of a Bouncing Torsional Vibration in Automotive Dual Mass Flywheel by Combining Testing and 1D CAE Modeling Approach

2019-06-05
2019-01-1556
Dual mass flywheel (DMF) is a well-known isolation system for vehicle drivetrain. DMF has two typical elastic energy storage systems: long travel arc springs and in-series spring units (including two or more springs) and sliding shoes connected in series. DMF has such complex nonlinear characteristics as torque-dependent torsional stiffness and rotational speed-dependent hysteresis friction due to its dependency of centrifugal force that is applied to components and radial force of springs. Because of this complexity, sub-harmonic vibration (SHV) may occur under certain circumstances, such as under light-load and high-rotational conditions. In general, since SHV’s frequency is 1/2 or 1/3 of the engine’s combustion frequency and may cause human discomfort, DMF must be designed robust against such nonlinear vibration. In this paper to reduce the SHV occurrence and to show a more robust design indicator, the SHV causing the mechanism is researched by testing and 1D CAE modeling.
Technical Paper

Effects of the Feature Extraction from Road Surface Image for Road Induced Noise Prediction Using Artificial Intelligence

2019-06-05
2019-01-1565
Next generation vehicles driven by motor such as electric vehicles and fuel cell vehicles have no engine noise. Therefore the balance of interior noise is different from the vehicles driven by conventional combustion engine. In particular, road induced noise tends to be conspicuous in the low to middle vehicle speed range, therefore, technological development to reduce it is important task. The purpose of this research is to predict the road induced noise from the signals of sensors adopted for automatic driving for utilizing the prediction result as a reference signal to reduce road induced noise by active noise control (ANC). Using the monocular camera which is one of the simplest image sensors, the road induced noise is predicted from the road surface image ahead of the vehicle by machine learning.
Technical Paper

Determine 24 GHz and 77 GHz Radar Characteristics of Surrogate Grass

2019-04-02
2019-01-1012
Road Departure Mitigation System (RDMS) is a new feature in vehicle active safety systems. It may not rely only on the lane marking for road edge detection, but other roadside objects This paper discusses the radar aspect of the RDMS testing on roads with grass road edges. Since the grass color may be different at different test sites and in different seasons, testing of RDMS with real grass road edge has the repeatability issue over time and locations. A solution is to develop surrogate grass that has the same characteristics of the representative real grass. Radar can be used in RDMS to identify road edges. The surrogate grass should be similar to representative real grass in color, LIDAR characteristics, and Radar characteristics. This paper provides the 24 GHz and 77 GHz radar characteristic specifications of surrogate grass.
Technical Paper

Development of an Emergency Stop Assist System

2019-04-02
2019-01-1025
Social concern with traffic accidents caused by driver’s medical emergencies has been growing for the last several years. In Japan, the government issued technical guidelines in June 2016 to promote systems that deal with such accidents. Based on those guidelines, the Emergency Stop Assist system was manufactured in October 2017 to help reduce such accidents. This article first describes its purpose and core design, then presents an overview of the system, and finally discusses its effectiveness.
Journal Article

Color and Height Characteristics of Surrogate Grass for the Evaluation of Vehicle Road Departure Mitigation Systems

2019-04-02
2019-01-1026
In recent years Road Departure Mitigation Systems (RDMS) is introduced to the market for avoiding roadway departure collisions. To support the performance testing of the RDMS, the most commonly seen road edge, grass, is studied in this paper for the development of standard surrogate grass. This paper proposes a method for defining the resembling grass color and height features due to significant variations of grass appearances in different seasons, temperatures and environments. Randomly selected Google Street View images with grass road edges are gathered and analyzed. Image processing techniques are deployed to obtain the grass color distributions. The height of the grass is determined by referencing the gathered images with measured grass heights. The representative colors and heights of grass are derived as the specifications of surrogate grass for the standard evaluation of RDMS.
X