Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

Advanced NOx Aftertreatment System Performance Following 150 LNT Desulfation Events

2008-06-23
2008-01-1541
An advanced exhaust aftertreatment system is being developed using a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF) and a selective catalytic reduction (SCR) catalyst arranged in series for both on- and off- highway diesel engines to meet the upcoming emissions regulations. This system utilizes a fuel reformer to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses LNT and SCR catalyst degradation as these were subjected to 150 desulfation events using a pre-production 2007 medium heavy-duty, on-highway diesel engine.
Technical Paper

Advanced NOx Aftertreatment System And Controls For On-Highway Heavy Duty Diesel Engines

2006-10-31
2006-01-3552
This paper describes a NOx aftertreatment system and control strategy for heavy-duty diesel engines to achieve US EPA 2010 emissions regulations. The NOx aftertreatment system comprises of a fuel reformer catalyst, a LNT catalyst, and a SCR catalyst. The only reductant required to operate this system is diesel fuel; hence, no urea infrastructure is required to support this approach. The fuel reformer is used to generate reformate which is a combination of hydrogen, carbon monoxide and unburned hydrocarbons. This reformate provides a more efficient feedstock to improve LNT NOx regeneration efficiency. Engine out NOx is reduced using a two-step process. First, NOx is stored in the LNT catalyst during lean operation. During rich operation, portions of the stored NOx are converted to nitrogen and ammonia. Next, the ammonia released from the LNT is captured by the downstream SCR catalyst. The stored ammonia is further used to reduce the NOx that slips past the LNT catalyst.
X