Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Efficient Design of Shell-and-Tube Heat Exchangers Using CAD Automation and Fluid flow Analysis in a Multi-Objective Bayesian Optimization Framework

2024-04-09
2024-01-2456
Shell-and-tube heat exchangers, commonly referred to as radiators, are the most prevalent type of heat exchanger within the automotive industry. A pivotal goal for automotive designers is to increase their thermal effectiveness while mitigating pressure drop effects and minimizing the associated costs of design and operation. Their design is a lengthy and intricate process involving the manual creation and refinement of computer-aided design (CAD) models coupled with iterative multi-physics simulations. Consequently, there is a pressing demand for an integrated tool that can automate these discrete steps, yielding a significant enhancement in overall design efficiency. This work aims to introduce an innovative automation tool to streamline the design process, spanning from CAD model generation to identifying optimal design configurations. The proposed methodology is applied explicitly to the context of shell-and-tube heat exchangers, showcasing the tool's efficacy.
Technical Paper

Lubrication Effectiveness Determination for Wet-Sump Transmissions using Multiphase Computational Fluid Dynamics Modeling

2024-01-16
2024-26-0298
Wet-sump transmissions are widely used in heavy duty and medium duty vehicles. As these transmissions do not have a dedicated forced lubrication system, it is important that the gear train, shafts, and enclosure are designed appropriately so that enough oil splashes to critical locations to ensure sufficient lubrication. The lubrication effectiveness of such transmissions can be studied through detailed tests or numerical simulations. Often, the vehicle, and therefore the transmission, encounters some severe operating conditions, such as climbing on an incline, driving downhill, etc. Studying these conditions through tests is an expensive process and this imposes the need for an analysis first approach. In this paper, the 3D multiphase Volume of Fluid (VOF) method is used to examine two such extreme cases: an 8-degree tilted installation of transmission in a vehicle, and an inclined condition of transmission during a 10-degree uphill climb.
Technical Paper

Coupled 3-D Multiphase CFD Thermal Simulation and Experimental Investigation on Thermal Performance of Roots Blower

2024-01-16
2024-26-0297
Roots blower is a rotary positive displacement pump which operates by pumping a fluid with a pair of meshing lobes. Recent trends in automotive industry demands high power density solutions for various applications. In comparison with legacy applications, compressors for high power density applications demand continuous operation with harsher duty cycle as well as demand higher pressure ratios. Because of longer duty cycles, it will be subjected to high heat loads which will cause a rise in temperatures of timing gears, bearings, and other components within the assembly. Accurate prediction of thermal performance is critical to design a durable and efficient roots blower for high power density applications. Thermal analysis of an assembly of roots blower involves modelling of multi-physics phenomena. This paper details a coupled CFD analysis approach to predict temperatures of roots blower components and timing gear case oil. Timing gears are lubricated using wet sump lubrication.
Technical Paper

A Reduced Order Model for Prediction of the Noise Radiated by a High-Speed EV Transmission using Statistical Energy Analysis

2023-05-08
2023-01-1113
The transmission is an integral part of the driveline in an automotive vehicle. Global vehicle pass-by noise regulations are becoming more stringent and transmissions are expected to be very quiet. Typically for an automotive system, engine is the most dominant noise source and transmissions have been considered a secondary noise source but as the trend is shifting towards more electric vehicles where engine noise is absent and overall vehicle is becoming quieter, the transmission can be more of a significant noise contributor. Gear whine is the major concern for sound radiation from the transmission. The gear whine simulation and acoustic radiation analysis of the transmission using traditional methods (FEM and BEM) is a crucial but very time-consuming part of the product development cycle. On top of that, electric vehicle transmissions operate at higher RPM which in turn increases the excitation frequency arising from the gear whine phenomenon.
Journal Article

Technology Levers for Meeting 2027 NOx and CO2 Regulations

2023-04-11
2023-01-0354
Commercial vehicles require fast aftertreatment heat-up to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations while minimizing CO2. The focus of this paper is to identify the technology levers when used independently and also together for the purpose of NOX and CO2 reduction toward achieving 2027 emissions levels while remaining CO2 neutral or better. A series of independent levers including cylinder deactivation, LO-SCR, electric aftertreatment heating and fuel burner technologies were explored. All fell short for meeting the 2027 CARB transient emission targets when used independently. However, the combinations of two of these levers were shown to approach the goal of transient emissions with one configuration meeting the requirement. Finally, the combination of three independent levers were shown to achieve 40% margin for meeting 2027 transient NOx emissions while remaining CO2 neutral.
Journal Article

Detection of Pinion Grinding Defects in a Nested Planetary Gear System using a Narrowband Demodulation Approach

2021-08-31
2021-01-1100
Nested planetary gear trains, which consist of two integrated co-axial single-stage planetary gearsets, have recently been widely implemented in automobile transmissions and various other applications. In the current study, a non-destructive vibrational and acoustical monitoring technique is developed to detect a common type of gear grinding defect for a complex nested gear train structure. A nested gear train which has an unground pinion with unpolished teeth profile is used to exemplify the developed methodology. An experimental test stand with an open and vertical mounting configuration has been designed to acquire both vibrational and acoustical data. The measured data are investigated using several signal processing techniques to identify unground pinions in the gear system. A general frequency spectrum analysis is performed initially, which is then followed by a peak finding algorithm to identify the peaks in the spectrum.
Technical Paper

Fast Diesel Aftertreatment Heat-up Using CDA and an Electrical Heater

2021-04-06
2021-01-0211
Commercial vehicles require fast aftertreatment heat-up in order to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations. Today’s diesel aftertreatment systems require on the order of 10 minutes to heat up during a cold FTP cycle. The focus of this paper is to heat up the aftertreatment system as quickly as possible during cold starts and maintain a high temperature during low load, while minimizing fuel consumption. A system solution is demonstrated using a heavy-duty diesel engine with an end-of-life aged aftertreatment system targeted for 2027 emission levels using various levels of controls. The baseline layer of controls includes cylinder deactivation to raise the exhaust temperature more than 100° C in combination with elevated idle speed to increase the mass flowrate through the aftertreatment system. The combination yields higher exhaust enthalpy through the aftertreatment system.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

A Comparison of Near-Field Acoustical Holography Methods Applied to Noise Source Identification

2019-06-05
2019-01-1533
Near-Field Acoustical Holography (NAH) is an inverse process in which sound pressure measurements made in the near-field of an unknown sound source are used to reconstruct the sound field so that source distributions can be clearly identified. NAH was originally based on performing spatial transforms of arrays of measured pressures and then processing the data in the wavenumber domain, a procedure that entailed the use of very large microphone arrays to avoid spatial truncation effects. Over the last twenty years, a number of different NAH methods have been proposed that can reduce or avoid spatial truncation issues: for example, Statistically Optimized Near-Field Acoustical Holography (SONAH), various Equivalent Source Methods (ESM), etc.
Technical Paper

Multi-Objective Optimization of Gerotor Port Design by Genetic Algorithm with Considerations on Kinematic vs. Actual Flow Ripple

2019-04-02
2019-01-0827
The kinematic flow ripple for gerotor pumps is often used as a metric for comparison among different gearsets. However, compressibility, internal leakages, and throttling effects have an impact on the performance of the pump and cause the real flow ripple to deviate from the kinematic flow ripple. To counter this phenomenon, the ports can be designed to account for fluid effects to reduce the outlet flow ripple, internal pressure peaks, and localized cavitation due to throttling while simultaneously improving the volumetric efficiency. The design of the ports is typically heuristic, but a more advanced approach can be to use a numerical fluid model for virtual prototyping. In this work, a multi-objective optimization by genetic algorithm using an experimentally validated, lumped parameter, fluid-dynamic model is used to design the port geometry.
Technical Paper

Fatigue Damage Modeling Approach Based on Evolutionary Power Spectrum Density

2019-04-02
2019-01-0524
Fatigue damage prediction approaches in both time and frequency domains have been developed to simulate the operational life of mechanical structures under random loads. Fatigue assessment of mechanical structures and components subjected to those random loads is increasingly being addressed by frequency domain approaches because of time and cost savings. Current frequency-based fatigue prediction methods focus on stationary random loadings (stationary Power Spectral Density), but many machine components, such as jet engines, rotating machines, and tracked vehicles are subjected to non-stationary PSD conditions under real service loadings. This paper describes a new fatigue damage modeling approach capable of predicting fatigue damage for structures exposed to non-stationary (evolutionary) PSD loading conditions where the PSD frequency content is time-varying.
Technical Paper

Engine Braking: A Perspective in Terms of Brake Power

2019-01-09
2019-26-0288
Engine braking is a supplemental retarding technology in addition to foundational friction brakes in commercial vehicles. This technology is in use in Europe & Americas for several decades now. In engine braking, the engine acts as a compressor, thus producing the required braking power. The braking power is generated by either reducing the volumetric efficiency or increasing the pressure difference across the cylinder. This is usually achieved by means of exhaust valve lift modulation. There are dominantly two types of engine brakes viz. bleeder brake and compression release brake. The present work uses GT-Power® model to study the braking performance of a 4-cylinder, medium duty diesel engine at different engine RPMs and valve lifts. The work brings out a comprehensive understanding of different lift events and their effects on braking performance.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

2018-04-03
2018-01-0382
The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

2018-04-03
2018-01-0379
Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

A Simulation Model for a Tandem External Gear Pump for Automotive Transmission

2018-04-03
2018-01-0403
This paper describes a simulation approach for the modeling of tandem external gear pumps. A tandem gear pump is the combination of two pumps with a common drive shaft. Such design architecture finds application in certain automotive transmission systems. The model presented in this work is applicable for pumps with both helical and spur gears. The simulation model is built on the HYGESim (HYdraulic GEars machines Simulator) previously developed by the authors for external spur gear units. In this work, the model formulation is properly extended to the capabilities of simulating helical gears. Starting directly from the CAD drawings of the unit, the fluid-dynamic model solves the internal instantaneous tooth space volume pressures and the internal flows following a lumped parameter approach. The simulation tool considers also the radial micro-motion of the gears, which influences the internal leakages and the features of the meshing process.
Technical Paper

Development of a Torque-Based Control Strategy for a Mode-Switching Hydraulic Hybrid Passenger Vehicle

2018-04-03
2018-01-1007
An increase in the number of vehicles per capita coupled with stricter emission regulations have made the development of newer and better hybrid vehicle architectures indispensable. Although electric hybrids have more visibility and are now commercially available, hydraulic hybrids, with their higher power densities and cheaper components, have been rigorously explored as the alternative. Several architectures have been proposed and implemented for both on and off highway applications. The most commonly used architecture is the series hybrid, which requires an energy conversion from the primary source (engine) to the secondary domain. From he re, the power flows either into the secondary source (high-pressure accumulator) or to the wheels depending upon the state of charge of the accumulator. A mode-switching hydraulic hybrid, which is a combination of a hydrostatic transmission and a series hybrid, was recently developed in the author’s research group.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

Low-Height Differential Concepts for EVs

2018-04-03
2018-01-1294
Compared to the internal-combustion-engine (ICE) vehicles on the road today, Electric Vehicles (EV) deliver more torque to vehicle wheels, and require smaller driveline packaging envelopes. Current differentials use asymmetrical ring gears with differential housings that are roughly a third of the tire outside diameter. New differential architecture concepts are shown here to deliver more torque to the wheels, while decreasing the height of the differential as much as fourfold. Most EV’s are driven by one or more torsion motors, delivering torque to the left side and the right side of the EV’s at different speeds during a vehicle turn, or a wheel “spinout.” At low speeds, the EV motors deliver more torque to the wheels than comparably sized ICE vehicles, so EV differentials must be built stronger and stiffer to manage the distribution of available drive torque.
Journal Article

A Numerical Investigation of Ignition of Ultra-Lean Premixed H2/Air Mixtures by Pre-Chamber Supersonic Hot Jet

2017-10-05
2017-01-9284
Gas engines often utilize a small-volume pre-chamber in which fuel is injected at near stoichiometric condition to produce a hot turbulent jet which then ignites the lean mixture in the main chamber. Hot jet ignition has several advantages over traditional spark ignition, e.g., more reliable ignition of extra-lean mixtures and more surface area for ignition resulting in faster burning and improved combustion burn time. Our previous experimental results show that supersonic jets could extend the lean flammability limit of fuel/air mixtures in the main chamber in comparison to subsonic jets. The present paper investigated the characteristics of supersonic hot jets generated by combustion of stoichiometric H2/air in a pre-chamber to understand the ignition mechanism of ultra-lean mixtures by supersonic hot jets.
X