Refine Your Search



Search Results

Technical Paper

Design and Assessment of an Antibacklash Single Roller Enveloping Hourglass Worm Gear

A theoretical and experimental analysis is conducted to study the influences of key design parameters on the backlash of the roller enveloping hourglass worm gear. Two equations, the gear engagement equation and the tooth profile equation have been derived and represented in terms of four key parameters arising from the backlash of the worm gear by applying the gear meshing theory. Based on the derived equations, an efficient approach for reducing or eliminating the backlash of such a novel warm gear is developed. Specifically, the influences of center distance, roller radius, transmission ratio, and the radius of base circle on the contact curves and the tooth profile have been systematically investigated through numerical analysis, modeling and simulation. Next, a roller enveloping hourglass worm gear is manufactured and used for assessing the efficiency of the developed method in reducing and/or eliminating the backlash.
Technical Paper

Theoretical Modeling of the Mechanical Degradation of Polymer Composites due to Moisture/Water Absorption and Damage Progression

The moisture/water absorption and microvoids/cracks progression are two well-understood mechanisms that have significant degradation effects on the mechanical properties/behaviors of the polymer-based composites. To theoretically investigate the effects of above two mechanisms, we develop a simple fiber reinforced polymer composites model by employing the internal state variable (ISV) theory. The water content and the anisotropically distributed damage of the composites are considered as two ISVs (the water content is described by a scalar variable and the damage is defined as a second order tensor) whose histories are governed by two specific physically-based evolution equations. The proposed model can be easily cast into a general theoretical framework to capture more polymer composites behaviors such as viscoelasticity, viscoplasticity and the thermal effect.
Technical Paper

Benchtop Investigation of Filtration Efficiency and Pressure Drop Behavior of Commercial High Porosity Gasoline Particulate Filters

The increasing number of gasoline direct injection (GDI) vehicles on the roads has drawn attention to their particulate matter (PM) emissions, which are greater both in number and mass than port fuel injected (PFI) spark ignition (SI) engines [1]. Regulations have been proposed and implemented to reduce exposure to PM, which has been shown to have negative impacts on both human health and the environment [2, 3]. Currently, the gasoline particulate filter (GPF) is the proposed method of reducing the amount of PM from vehicle exhaust, but modifications to improve the filtration efficiency (FE) and reduce the pressure drop across the filter are yet needed for implementation of this solution in on-road vehicles. This work evaluates the impacts of wall thickness and cell density on filtration efficiency and backpressure using a benchtop filtration system.
Technical Paper

Design and Prototyping of Cleaning Systems for Cylinder Head and Engine Block Conveying Lines

This paper presents the design of two cleaning systems following systems engineering design approach. An in situ cleaning system was designed for removing engine oil stains and metal swarf and shavings that adhere to rollers of conveying lines which convey cylinder head as well as other heavy engine components. The other system was to clear and collect metal debris accumulated in the grooves of an engine block internal assembly line. Prototypes were fabricated for the designed cleaning equipment for further testing and assessment. In the system engineering design process, preliminary, intermediate, and detailed design were conducted following an identification of the design problem, within that process a sequence of tasks such as synthesis, analysis, prototyping, and assessment were completed.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

A Multiscale Study of Single Crystal Copper Plate with Octal Orientation Struck by a Nickel Projectile

A common interaction between a penetrator and a target has been the use of copper and nickel materials. However, a multiscale analysis has not been performed on such a system. Compared to steels, aluminum alloys, titanium alloys and other metallic materials, a description of the mechanical behavior of pure ductile metals such as Cu struck by a penetrator comprises nickel under the high strain rate at different multiscale still remains unknown. In this research, Modified Embedded Atom Method (MEAM) Potential is utilized to study this system and the molecular dynamics simulation is employed in order to provide structure property evolution information for plasticity and shearing mechanisms.
Technical Paper

Effect of Intake Valve Profile Modulation on Passenger Car Fuel Consumption

Variable valve actuation is a focus to improve fuel efficiency for passenger car engines. Various means to implement early and late intake valve closing (E/LIVC) at lower load operating conditions is investigated. The study uses GT Power to simulate on E/LIVC on a 2.5 L gasoline engine, in-line four cylinder, four valve per cylinder engine to evaluate different ways to achieve Atkinson cycle performance. EIVC and LIVC are proven methods to reduce the compression-to-expansion ratio of the engine at part load and medium load operation. Among the LIVC strategies, two non-traditional intake valve lift profiles are investigated to understand their impact on reduction of fuel consumption at low engine loads. Both the non-traditional lift profiles retain the same maximum lift as a normal intake valve profile (Otto-cycle) unlike a traditional LIVC profile (Atkinson cycle) which needs higher maximum lift.
Technical Paper

Frictional Differences between Rolling and Sliding Interfaces for Passenger Car Switching Roller Finger Followers

The demand for improving fuel economy in passenger cars is continuously increasing. Eliminating energy losses within the engine is one method of achieving fuel economy improvement. Frictional energy losses account for a noticeable portion of the overall efficiency of an engine. Valvetrain friction, specifically at the camshaft interface, is one area where potential for friction reduction is evident. Several factors can impact the friction at the camshaft interface. Some examples include: camshaft lobe profile, rocker arm interface geometry, valve spring properties, material properties, oil temperature, and oil pressure. This paper discusses the results of a series of tests that experimented the changes in friction that take place as these factors are altered. The impact of varying testing conditions such as oil pressure and oil temperature was evaluated throughout the duration of the testing and described herein.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

In-Duct Acoustic Source Data for Roots Blowers

Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
Journal Article

Mechanical Design, Prototyping, and Validation of A Martian Robot Mining System

A robot mining system was developed by the State Space Robotic undergraduate student design team from Mississippi State University (MSU) for the 2016 NASA Robotic Mining Competition. The mining robot was designed to traverse the Martian chaotic terrain, excavate a minimum of 10 kg of Martian regolith and deposit the regolith into a collector bin within 10 minutes as part of the competition. A Systems Engineering approach was followed in proceeding with this design project. The designed mining robot consisted of two major components: (1) mechanical system and (2) control system. This paper mainly focuses on the design and assessment process of the mechanical system but will also briefly mention the control system so as to evaluate the designed robotic system in its entirety. The final designed robot consisted of an aluminum frame driven by four motors and wheels. It utilized a scoop and lifting arm subsystem for collecting and depositing Martian regolith.
Technical Paper

Development of A Dynamic Modeling Framework to Predict Instantaneous Status of Towing Vehicle Systems

A dynamic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towed vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point. Input parameters of this model include initial conditions of the system, real-time locations of a reference point (e.g. front center of the towing vehicle) that can be determined from a beacon and radar system, and instantaneous accelerations of this system, which come from driver maneuvers (accelerating, braking, steering, etc.) can be read from a data acquisition system installed on the towing vehicle.
Technical Paper

Development of a Particulate Trapping System and Investigation of Effects of Viscosity of the Filter Media Using Experimental and Computational Methods

A cost effective, portable particulate management system was developed, prototyped, and evaluated for further application and commercialization, which could remove and dispose particulate matter suspended in air efficiently and safely. A prototype of the present system was built for experimental assessment and validation. The experimental data showed that the developed particulate management system can effectively clean the air by capturing the particles inside it. Effects of viscosity of filter medium on the performance of the developed system were also discussed. The present system is very flexible, whose size and shape can be scaled and changed to be fit for different applications. Its manufacturing cost is less than $10. Based on the experimental validation results, it was found that the present system can be further developed, commercialized, and applied for a variety of industries.
Technical Paper

Innovative Design - Route to Functionally Graded Structures

Functionally graded materials enable structures to have distribution of different properties (physical, thermal, electrical, mechanical, etc.) across its volume; achievable via material/ design/ process engineering. These functionally graded materials can find an application in systems which demand localized variation or enhancement in properties in different regions of the same component. In this paper, we focus on the potential ways of designing functionally graded polymer composite structure by injection molding process. Advanced mold designs for injection molding process can be effectively used to manufacture the functionally graded structures. Innovative design approach has been explored to control the distribution of the filler content /orientation to impart distinctive properties across the cross section / geometry without affecting the bulk properties.
Technical Paper

Developing a Model Predictive Control-Based Algorithm for Energy Management System of the Catenary-Based Electric Truck

Although the cost-saving and good environmental impacts are the benefits that make Electric Vehicles (EVs) popular, these advantages are significantly influenced by the cost of battery replacement over the vehicle lifetime. After several charging and discharging cycles, the battery is subjected to energy and power degradation which affects the performance and efficiency of the vehicle. In addition to battery replacement cost, the electricity cost being paid by drivers is another key factor in selecting the EVs. An Energy Management System (EMS) with Model Predictive Control-based (MPC) algorithm is presented for a specific case of heavy-duty EV. Such EV draws its energy from the grid via catenary in addition to the on-board battery. Dynamic model of the vehicle will be defined by State Space Equations (SSE).
Technical Paper

Enhanced Simulation Techniques for the Automatic Evaluation of Vehicle Designs

The ability to quickly and automatically evaluate vehicle designs is a critical tool in an efficient vehicle design process. This paper presents techniques for vehicle parameter estimation using automatic intelligent simulations. These techniques enable the efficient and automatic evaluation of many important aspects of vehicle designs. The effectiveness of this approach is demonstrated by using vehicle tests that are commonly performed on military ground vehicles. Our simulation techniques are able to determine the relevant vehicle performance characteristics in a much more efficient manner than could be done previously. This is done automatically, once the user has specified the type of test to be performed. A terrain sample is automatically generated and the vehicle’s behavior on each terrain instance is evaluated until the specified test conditions are met.
Technical Paper

Light Weight Structures - Structural Analysis for Weight Optimization and Joining Techniques of Dissimilar Materials

Light weight structures give significant advantages to products in the Industrial sector. Component weight-saving plays a major role in improving the efficiency and performance of assembled systems. The introduction of lighter materials into products using dissimilar material joining techniques can create more weight savings and leads to lighter structures. Structural optimization is another method to optimize the material layout without affecting overall performance of the product. This paper discusses the methods to create lighter structures by the introduction of lighter materials in structures and structural optimization methods. Lighter materials are introduced in the structure using dissimilar material joining techniques. Joining processes such as thermal shrink-fit and mechanical press-fit are useful for metal to metal components. Similarly, adhesively bonded joints are useful for both metal and non-metal (plastics and composites) components.
Technical Paper

Fuel Economy Comparison Studies of Forklift Transmission Architecture

Fuel economy is one of the major challenges for both on and off-road vehicles. Inefficient engine operation and loss of kinetic energy in the form of heat during braking are two of the major sources of wasted fuel energy. Rising energy costs, stringent emission norms and increased environmental awareness demand efficient drivetrain designs for the next generation of vehicles. This paper analyzes three different types of powertrain concepts for efficient operation of a forklift truck. Starting from a conventional torque convertor transmission, hydrostatic transmission and a hydraulic hybrid transmission (Eaton architecture) are compared for their fuel economy performance. Eaton hydraulic hybrid system is seen to perform much better compared to other two architectures. Improved fuel economy is attributed to efficient engine operation and regeneration of vehicle kinetic energy during braking.
Technical Paper

An Efficient Algorithm for Solving Differential Equations to Facilitate Modeling and Simulation of Aerospace Systems

Differential equations play a prominent role in aerospace engineering by modeling aerospace structures, describing important phenomena, and simulating mathematical behavior of aerospace dynamical systems. Presently, aerospace systems have become more complex, space vehicle missions require more hours of simulation time to complete a maneuver, and high-performance missiles require more logical decisions in there phases of flight. Because of these conditions, a computationally efficient algorithm for solving these differential equations is highly demanded to significantly reduce the computing time. This paper presents an efficient method for solving the differential equations by using variational iteration method, which can be implemented into software package to dramatically reduce the computing time for simulating the aerospace systems thereby significantly improving computer's performance in real-time design and simulation of aircrafts, spacecrafts, and other aerospace vehicles.
Journal Article

Comparison of a Blade Element Momentum Model to 3D CFD Simulations for Small Scale Propellers

Many Small Unmanned Aerial Vehicles (SUAV) are driven by small scale, fixed blade propellers. Flow produced by the propeller can have a significant impact on the aerodynamics of a SUAV. Therefore, in Computational Fluid Dynamic (CFD) simulations, it is often necessary to simulate the SUAV and propeller coupled together. For computational efficiency, the propeller can be modeled in a steady-state view by using momentum source terms to add the thrust and swirl produced by the propeller to the flow field. Many momentum source term models are based on blade element theory. Blade element theory divides the blade into element sections in the spanwise direction and assumes each element to operate independently as a two-dimensional (2D) airfoil.