Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

Elastomeric Swaging Finite Element Analysis Methodology to Evaluate Structural Integrity of Internal Swaged Joints

2024-06-01
2024-26-0428
In applications demanding high performance under extreme conditions of pressure and temperature, a range of Mechanically Attached Fittings (MAFs) is offered by various Multinational Corporations (MNCs). These engineered fittings have been innovatively designed to meet the rigorous requirements of the aerospace industry, offering a cost-effective and lightweight alternative to traditional methods such as brazing, welding, or other mechanically attached tube joints. One prominent method employed for attaching these fittings to tubing is through Internal Swaging, a mechanical technique. This process involves the outward formation of rigid tubing into grooves within the fitting. One of the methods with which this intricate operation is achieved is by using a drawbolt - expander assembly within an elastomeric swaging machine.
Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Eco-Routing Algorithm for Energy Savings in Connected Vehicles Using Commercial Navigation Information

2024-04-09
2024-01-2605
Vehicle-to-everything (V2X) communication, primarily designed for communication between vehicles and other entities for safety applications, is now being studied for its potential to improve vehicle energy efficiency. In previous work, a 20% reduction in energy consumption was demonstrated on a 2017 Prius Prime using V2X-enabled algorithms. A subsequent phase of the work is targeting an ambitious 30% reduction in energy consumption compared to a baseline. In this paper, we present the Eco-routing algorithm, which is key to achieving these savings. The algorithm identifies the most energy-efficient route between an Origin-Destination (O-D) pair by leveraging information accessible through commercially available Application Programming Interfaces (APIs). This algorithm is evaluated both virtually and experimentally through simulations and dynamometer tests, respectively, and is shown to reduce vehicle energy consumption by 10-15% compared to the baseline over real-world routes.
Technical Paper

Using ALPHA v3.0 to Simulate Conventional and Electrified GHG Reduction Technologies in the MY2022 Light-Duty Fleet

2024-04-09
2024-01-2710
As GHG and fuel economy regulations of light-duty vehicles have become more stringent, advanced emissions reduction technology has extensively penetrated the US light-duty vehicle fleet. This new technology includes not only advanced conventional engines and transmissions, but also greater adoption of electrified powertrains. In 2022, electrified vehicles – including mild hybrids, strong hybrids, plug-ins, and battery electric vehicles – made up nearly 17% of the US fleet and are on track to further increase their proportion in subsequent years. The Environmental Protection Agency (EPA) has previously used its Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) full vehicle simulation tool to evaluate the greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA contains a library of benchmarked powertrain components that can be matched to specific vehicles to explore GHG emissions performance.
Technical Paper

Diesel Oxidation Catalyst Performance with Biodiesel Formulations

2024-04-09
2024-01-2711
Biodiesel (i.e., mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats) is a renewable diesel fuel providing life-cycle greenhouse gas emission reductions relative to petroleum-derived diesel. With the expectation that there would be widespread use of biodiesel as a substitute for ultra-low sulfur diesel (ULSD), there have been many studies looking into the effects of biodiesel on engine and aftertreatment, particularly its compatibility to the current aftertreatment technologies. The objective of this study was to generate experimental data to measure the effectiveness of a current technology diesel oxidation catalysts (DOC) to oxidize soy-based biodiesel at various blend levels with ULSD. Biodiesel blends from 0 to 100% were evaluated on an engine using a conventional DOC.
Technical Paper

Fuel Sensitivity Affects on the Knock and CoV Limits of a Spark Ignited Engine

2024-04-09
2024-01-2816
Engine knock is one of the limiting factors in determining the compression ratio and engine efficiency for spark ignited engines. Using the Southwest Research Institute Knock-CoV test method, it was previously shown that the knock limited load versus combustion phasing (CA50) has a constant slope. All of the knock mitigation strategies tested provided a shift to these knock limited loads but also increased the slope. That is, for the same CA50 retard the knock limited load could be increased more. Our hypothesis was that due to fuel sensitivity, or the difference between the RON and MON, the reactions that lead to knock will behave differently as the pressure-temperature history changes with engine speeds and loads. The fuel affects on the knock and CoV limits were studied by testing fuels with various sensitivities including methanol, E85 (85% ethanol) and Iso-octane.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

CARB Off-Road Low NOx Demonstration Program - Engine Calibration and Initial Test Results

2024-04-09
2024-01-2130
Off-road diesel engines remain one of the most significant contributors to the overall oxides of nitrogen (NOX) inventory and the California Air Resources Board (CARB) has indicated that reductions of up to 90% from current standards may be necessary to achieve its air quality goals. In recognition of this, CARB has funded a program aimed at demonstrating emission control technologies for off-road engines. This program builds on previous efforts to demonstrate Low NOX technologies for on-road engines. The objective was to demonstrate technologies to reduce tailpipe NOX and particulate matter (PM) emissions by 90 and 75%, respectively, from the current Tier 4 Final standards. In addition, the emission reductions were to be achieved while also demonstrating a 5 to 8.6% carbon dioxide (CO2) reduction and remaining Greenhouse Gas (GHG) neutral with respect to nitrous oxide (N2O) and methane (CH4).
Technical Paper

Lubrication Effectiveness Determination for Wet-Sump Transmissions using Multiphase Computational Fluid Dynamics Modeling

2024-01-16
2024-26-0298
Wet-sump transmissions are widely used in heavy duty and medium duty vehicles. As these transmissions do not have a dedicated forced lubrication system, it is important that the gear train, shafts, and enclosure are designed appropriately so that enough oil splashes to critical locations to ensure sufficient lubrication. The lubrication effectiveness of such transmissions can be studied through detailed tests or numerical simulations. Often, the vehicle, and therefore the transmission, encounters some severe operating conditions, such as climbing on an incline, driving downhill, etc. Studying these conditions through tests is an expensive process and this imposes the need for an analysis first approach. In this paper, the 3D multiphase Volume of Fluid (VOF) method is used to examine two such extreme cases: an 8-degree tilted installation of transmission in a vehicle, and an inclined condition of transmission during a 10-degree uphill climb.
Technical Paper

Coupled 3-D Multiphase CFD Thermal Simulation and Experimental Investigation on Thermal Performance of Roots Blower

2024-01-16
2024-26-0297
Roots blower is a rotary positive displacement pump which operates by pumping a fluid with a pair of meshing lobes. Recent trends in automotive industry demands high power density solutions for various applications. In comparison with legacy applications, compressors for high power density applications demand continuous operation with harsher duty cycle as well as demand higher pressure ratios. Because of longer duty cycles, it will be subjected to high heat loads which will cause a rise in temperatures of timing gears, bearings, and other components within the assembly. Accurate prediction of thermal performance is critical to design a durable and efficient roots blower for high power density applications. Thermal analysis of an assembly of roots blower involves modelling of multi-physics phenomena. This paper details a coupled CFD analysis approach to predict temperatures of roots blower components and timing gear case oil. Timing gears are lubricated using wet sump lubrication.
Technical Paper

Simulation of Crimping Process for Electrical Contacts to Ensure Structural Integrity of Crimped Joint under Static Loads

2024-01-16
2024-26-0291
The use of electrical contacts in aerospace applications is crucial, particularly in connectors that transmit signal and power. Crimping is a widely preferred method for joining electrical contacts, as it provides a durable connection and can be easily formed. This process involves applying mechanical load to the contact, inducing permanent deformation in the barrel and wire to create a reliable joint with sufficient wire retention force. This study utilizes commercially available Abaqus software to simulate the crimping process using an explicit solver. The methodology developed for this study correlates FEA and testing for critical quality parameters such as structural integrity, mechanical strength, and joint filling percentage. A four-indenter crimping tool CAD model is utilized to form the permanent joint at the barrel-wire contact interfaces, with displacement boundary conditions applied to the jaws of the tool in accordance with MIL-C-22520/1C standard.
Technical Paper

Study of Critical Vias Design Parameters for Power Electronics Thermal Management

2024-01-16
2024-26-0317
With the advent of wide band gap semiconductor devices like SiC based MOSFETs/Diodes, there is a growing demand for utilizing electrical power instead of the conventional fuel-based power generation in both automotive and aerospace industry. In automotive/aerospace industry the focus on electrification has resulted in a need for sub-systems like inverters, power distribution units, motor controllers, DC-DC converters that actively utilize SiC based power electronics devices. To address the growing power density requirements for electronics in next generation product families, more efficient & reliable thermal management solution plays a critical role. The effective thermal management of the power electronics is also critical aspect to ensure overall system reliability. The conventional thermal management system (TMS) optimization targets heat sink/ cold plate design parameters like fin spacing, thickness, height etc. or sizing of the required cooling pump/fan.
Technical Paper

High-Load Engine Simulation of Renewable Diesel Fuel Using A Reduced Mechanism

2023-10-31
2023-01-1620
According to the Annual Energy Outlook 2022 (AEO2022) report, almost 30% of the transport sector will still use internal combustion engines (ICE) until 2050. The transportation sector has been actively seeking different methods to reduce the CO2 emissions footprint of fossil fuels. The use of lower carbon-intensity fuels such as Renewable Diesel (RD) can enable a pathway to decarbonize the transport industry. This suggests the need for experimental or advanced numerical studies of RD to gain an understanding of its combustion and emissions performance. This work presents a numerical modeling approach to study the combustion and emissions of RD. The numerical model utilized the development of a reduced chemical kinetic mechanism for RD’s fuel chemistry. The final reduced mechanism for RD consists of 139 species and 721 reactions, which significantly shortened the computational time from using the detailed mechanism.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Improved Combustion Efficiency in Methanol/Renewable Diesel Dual Fuel Combustion by Advanced Injection Timing and Increased Intake Temperature: Single-Cylinder Experiment

2023-10-31
2023-01-1641
Conventional diesel combustion (CDC) is known to provide high efficiency and reliable engine performance, but often associated with high particulate matter (PM) and nitrogen oxides (NOX) emissions. Combustion of fossil diesel fuel also produces carbon dioxide (CO2), which acts as a harmful greenhouse gas (GHG). Renewable and low-carbon fuels such as renewable diesel (RD) and methanol can play an important role in reducing harmful criteria and CO2 emissions into the atmosphere. This paper details an experimental study using a single-cylinder research engine operated under dual-fuel combustion using methanol and RD. Various engine operating strategies were used to achieve diesel-like fuel efficiency. Measurements of engine-out emissions and in-cylinder pressure were taken at test conditions including low-load and high-load operating points.
Technical Paper

Comparison on Combustion and Emissions Performance of Biodiesel and Diesel in a Heavy-duty Diesel Engine: NOX, Particulate Matter, and Particle Size Distribution

2023-09-29
2023-32-0100
Low carbon emissions policies for the transportation sector have recently driven more interest in using low net-carbon fuels, including biodiesel. An internal combustion engine (ICE) can operate effectively using biodiesel while achieving lower engine-out emissions, such as soot, mostly thanks to oxygenate content in biodiesel. This study selected a heavy-duty (HD) single-cylinder engine (SCE) platform to test biodiesel fuel blends with 20% and 100% biodiesel content by volume, referred to as B20, and B100. Test conditions include a parametric study of exhaust gas recirculating (EGR), and the start of injection (SOI) performed at low and high engine load operating points. In-cylinder pressure and engine-out emissions (NOX and soot) measurements were collected to compare diesel and biodiesel fuels.
Technical Paper

Analysis of overcharge tolerance of aged LMO cells with Examples

2023-09-29
2023-32-0108
The capacity of a lithium-ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms associated with unwanted side reactions that occur in these batteries. The same reactions occur during overcharge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. As the battery ages the accuracy of state of charge prediction decreases and vulnerability to persistent overcharge increases. Moreover, as the battery ages, its tolerance to such unintended overcharge changes. This tolerance depends on the nature of the history of cycle and calendar aging. A map of this tolerance in the BMS can provide awareness of the factor of safety due to overcharge as battery ages. Signatures of early warning signs of incipient thermal runaway due to overcharge can also be very useful features in a BMS.
Technical Paper

Numerical Study of Dual Fuel Methanol/Diesel Combustion under Engine-like Condition

2023-09-29
2023-32-0121
Alternative fuels such as methanol can significantly reduce greenhouse gas (GHG) emissions when used in internal combustion engines (ICEs). This study characterized the combustion of methanol, methanol/diesel, and methanol/renewable diesel numerically. Numerical findings were also compared with engine experiments using a single-cylinder engine (SCE). The engine was operated under a dual-fuel combustion mode: methanol was fumigated at the intake port, and diesel was injected inside the cylinder. The characteristic of ignition delay trend as methanol concentration increased is being described at low temperature (low engine load) and high temperature (high engine load) conditions.
Technical Paper

Reducing the Probability of Error in Testing and Simulation

2023-05-08
2023-01-1114
Simulation and testing are often done by different engineers in different departments of a company. This can lead to disconnects and unrealistic predictions, especially if the person doing simulations does not have an experimental background. On the other hand, experimental results can also include errors that result in misleading answers. It is important for the engineer doing either testing or simulation to have a good understanding for what results are plausible and what results might be suspect. This paper will provide examples where error crept into testing or simulation that could have been caught and corrected early if a good feel for “reasonable” results had been in place. The importance of understanding how a software package is analyzing the data will be explained, since settings buried deep within a menu structure can drive misleading results.
X