Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Evaluation of DIC Based Forming Limit Curve Methods at Various Temperatures of Aluminum Alloys for Automotive Applications

2017-03-28
2017-01-0309
Aluminum alloys are increasingly utilized in automotive body panels and crash components to reduce weight. Accurately assessing formability of the sheet metal can reduce design iteration and tooling tryouts to obtain the desired geometry in aluminum stampings. The current ISO forming limit curve (FLC) procedure is a position dependent technique which produces the FLC based on extrapolation at the crack location. As aluminum sheet metal use increases in manufacturing, accurate determination of the forming limits of this material will be necessary prior to production. New time dependent methods using digital imaging correlation (DIC) account for variations in material behavior by continuously collecting strain data through the material necking point. This allows more accurate FLC determination that is necessary for efficient design in the automotive stamping industry.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

2008-04-14
2008-01-1137
Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
Technical Paper

Effects of Prepulse Resistance Spot Welding Schedules on the Weldability Characteristics of Galvanized Steel

1990-02-01
900740
Many automotive production plants are using various prepulse schedules for resistance spot welding thin gauge galvanized steel. The claimed reasons are that wider current range and longer electrode life are obtainable in comparison to the conventional schedule. However, data to support this are not available. The objective of this program was to determine the effect of prepulsation on spot weldability of galvanized steel. In this work, several prepulse resistance spot welding schedules were evaluated in two full factorial experiments. The effect of the number of prepulse cycles, the prepulse heat level and the effect of cool time were studied in detail. Weldability was evaluated using an electrode life test procedure in which the current range was periodically examined over the life of the electrodes. Generally, the results indicate that prepulsation has a negative effect on the resistance spot weldability of thin gauge galvanized steel.
X