Refine Your Search

Search Results

Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Technical Paper

Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode

2020-04-14
2020-01-0307
Butanol is an attractive alternative fuel by virtue of its renewable source and low sooting tendency. In this paper, three butanol isomers (n-butanol, isobutanol, and tert-butanol) were induced via port injection respectively and n-heptane was directly injected into the cylinder to investigate reactivity controlled compression ignition in a heavy-duty diesel engine. This work evaluates the potential of applying butanol as low reactivity fuel and the effects of reactivity gradient on combustion and emission characteristics. The experiments were performed from low load to medium-high load. Due to the different reactivities among the butanol isomers, the exhaust gas recirculation rate and the direct injection strategy were varied for a specific butanol isomer and testing load. Particularly, isobutanol/n-heptane can be operated with single direct injection and no exhaust gas recirculation up to medium load due to the high octane rating.
Technical Paper

Performance and Emission Studies in a Heavy-Duty Diesel Engine Fueled with an N-Butanol and N-Heptane Blend

2019-04-02
2019-01-0575
N-butanol, as a biomass-based renewable fuel, has many superior fuel properties. It has a higher energy content and cetane number than its alcohol competitors, methanol and ethanol. Previous studies have proved that n-butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency when blended with diesel. However, most studies on n-butanol are limited to low blending ratios, which restricts the improvement of emissions. In this paper, 80% by volume of n-butanol was blended with 20% by volume of n-heptane (namely BH80). The influences of various engine parameters (combustion phasing, EGR ratio, injection timing and intake pressure, respectively) on its combustion and emission characteristics are tested at different loads. The results showed that when BH80 uses more than 40% EGR, the emitted soot and nitrogen oxides (NOx) emissions are below the EURO VI legislation.
Technical Paper

Heavy-Duty Diesel Engine Spray Combustion Processes: Experiments and Numerical Simulations

2018-09-10
2018-01-1689
A contemporary approach for improving and developing the understanding of heavy-duty Diesel engine combustion processes is to use a concerted effort between experiments at well-characterized boundary conditions and detailed, high-fidelity models. In this paper, combustion processes of n-dodecane fuel sprays under heavy-duty Diesel engine conditions are investigated using this approach. Reacting fuel sprays are studied in a constant-volume pre-burn vessel at an ambient temperature of 900 K with three reference cases having specific combinations of injection pressure, ambient density and ambient oxygen concentration (80, 150 & 160 MPa - 22.8 & 40 kg/m3-15 & 20.5% O2). In addition to a free jet, two different walls were placed inside the combustion vessel to study flame-wall interaction.
Technical Paper

Spray Combustion Analysis of Humins

2017-09-04
2017-24-0119
Second generation biomass is an attractive renewable feedstock for transport fuels. Its sulfur content is generally negligible and the carbon cycle is reduced from millions to tens of years. One hitherto non-valorized feedstock are so-called humins, a residual product formed in the conversion of sugars to platform chemicals, such as hydroxymethylfurfural and methoxymethylfurfural, intermediates in the production of FDCA, a building block used to produce the polyethylene furanoate (PEF) bottle by Avantium. The focus of this study is to investigate the spray combustion behavior of humins as a renewable alternative for heavy fuel oil (HFO) under large two-stroke engine-like conditions in an optically accessible constant volume chamber.
Technical Paper

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

2017-03-28
2017-01-0726
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Technical Paper

Ignition Sensitivity Study of Partially Premixed Combustion by Using Shadowgraphy and OH* Chemiluminescence Methods

2016-04-05
2016-01-0761
Partially Premixed Combustion (PPC) is a promising combustion concept for future IC engines. However, controllability of PPC is still a challenge and needs more investigation. The scope of the present study is to investigate the ignition sensitivity of PPC to the injection timing at different injection pressures. To better understand this, high-speed shadowgraphy is used to visualize fuel injection and evaporation at different Start of Injections (SOI). Spray penetration and injection targeting are derived from shadowgraphy movies. OH* chemiluminescence is used to comprehensively study the stratification level of combustion which is helpful for interpretation of ignition sensitivity behavior. Shadowgraphy results confirm that SOI strongly affects the spray penetration and evaporation of fuel. However, spray penetration and ignition sensitivity are barely affected by the injection pressure.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Journal Article

Lignin Derivatives as Potential Octane Boosters

2015-04-14
2015-01-0963
Owing to environmental and health concerns, tetraethyl lead was gradually phased out from the early 1970's to mid-1990's in most developed countries. Advances in refining, leading to more aromatics (via reformate) and iso-paraffins such as iso-octane, along with the introduction of (bio) oxygenates such as MTBE, ETBE and ethanol, facilitated the removal of lead without sacrificing RON and MON. In recent years, however, legislation has been moving in the direction of curbing aromatic and olefin content in gasoline, owing to similar concerns as was the case for lead. Meanwhile, concerns over global warming and energy security have motivated research into renewable fuels. Amongst which are those derived from biomass. The feedstock of interest in this study is lignin, which, together with hemicellulose and cellulose, is amongst the most abundant organic compounds on the planet.
Technical Paper

Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion

2015-04-14
2015-01-1745
For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduction of two fuels with different physical and chemical properties makes the combustion process complicated and challenging to model. In this study, a multi-zone approach is applied to NG-diesel RCCI combustion in a heavy-duty engine. Auto-ignition chemistry is believed to be the key process in RCCI. Starting from a multi-zone model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the in-cylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine.
Technical Paper

Characterization of Low Load PPC Operation using RON70 Fuels

2014-04-01
2014-01-1304
The concept of Partially Premixed Combustion is known for reduced hazardous emissions and improved efficiency. Since a low-reactive fuel is required to extend the ignition delay at elevated loads, controllability and stability issues occur at the low-load end. In this investigation seven fuel blends are used, all having a Research Octane Number of around 70 and a distinct composition or boiling range. Four of them could be regarded as ‘viable refinery fuels’ since they are based on current refinery feedstocks. The latter three are based on primary reference fuels, being PRF70 and blends with ethanol and toluene respectively. Previous experiments revealed significant ignition differences, which asked for further understanding with an extended set of measurements. Experiments are conducted on a heavy duty diesel engine modified for single cylinder operation. In this investigation, emphasis is put on idling (600 rpm) and low load conditions.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Combustion Phasing Controllability with Dual Fuel Injection Timings

2012-09-10
2012-01-1575
Reactivity controlled compression ignition through in-cylinder blending gasoline and diesel to a desired reactivity has previously been shown to give low emission levels and a clear simultaneous efficiency advantage. To determine the possible viability of the concept for on-road application, the control space of injection parameters with respect to combustion phasing is presented. Four injection strategies have been investigated, and for each the respective combustion phasing response is presented. Combustion efficiency is shown to be greatly affected by both the injection-timing and injection-strategy. All injection strategies are shown to break with the common soot-NOx trade-off, with both smoke and NOx emissions being near or even below upcoming legislated levels. Lastly, pressure rise rates are comparable with conventional combustion regimes with the same phasing. The pressure rise rates are effectively suppressed by the high dilution rates used.
Technical Paper

Modeling Fuel Spray Auto-ignition using the FGM Approach: Effect of Tabulation Method

2012-04-16
2012-01-0157
The Flamelet Generated Manifold (FGM) method is a promising technique in engine combustion modeling to include tabulated chemistry. Different methodologies can be used for the generation of the manifold. Two approaches, based on igniting counterflow diffusion flamelets (ICDF) and homogeneous reactors (HR) are implemented and compared with Engine Combustion Network (ECN) experimental database for the baseline n-heptane case. Before analyzing the combustion results, the spray model is optimized after performing a sensitivity study with respect to turbulence models, cell sizes and time steps. The standard High Reynolds (Re) k-ε model leads to the best match of all turbulence models with the experimental data. For the convergence of the mixture fraction field an appropriate cell size is found to be smaller than that for an adequate spray penetration length which appears to be less influenced by the cell size.
Technical Paper

Review on the Effects of Dual-Fuel Operation, Using Diesel and Gaseous Fuels, on Emissions and Performance

2012-04-16
2012-01-0869
In recent years the automotive industry has been forced to reduce the harmful and pollutant emissions emitted by direct-injected diesel engines. To accomplish this difficult task various solutions have been proposed. One of these proposed solutions is the usage of gaseous fuels in addition to the use of liquid diesel. These gaseous fuels have more gasoline-like properties, such as high octane numbers, and thereby are resistant against auto-ignition. Diesel on the other hand, has a high cetane number which makes it prone to auto-ignition. In this case the gaseous fuel is injected in the inlet manifold, and the diesel is direct injected in the cylinder at the end of the compression stroke. Thereby the diesel fuel spontaneously ignites and acts as an ignition source. The main goals for the use of a dual-fuel operation with diesel and gaseous fuels are the reduction of particulate matter (PM) and nitrogen oxides (NOx) emission.
Technical Paper

Emission Performance of Lignin-Derived Cyclic Oxygenates in a Heavy-Duty Diesel Engine

2012-04-16
2012-01-1056
In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and cyclohexane ethanol a saturated or aliphatic ring structure. Accordingly, the research is focused on the effect of aromaticity on the aforementioned emissions trade-off. This research is relevant because, starting from lignin, a biomass component with a complex poly-aromatic structure, the production of 2-phenyl ethanol requires less hydrogen and can therefore be produced at lower cost than is the case for cyclohexane ethanol.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Technical Paper

Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime

2009-09-13
2009-24-0048
Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a conventional CI fuel faces a number of challenges. First, EDI has the intrinsic risk of wall-wetting, i.e. collision of fuel against the combustion chamber periphery. Second, engine operation in the EDI regime is difficult to control as auto-ignition timing is largely decoupled from fuel injection timing. In dual-mode PCCI engines (i.e. conventional Dl at high loads) wall-wetting should be prevented by selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than by redesign of the engine (combustion chamber shape, injector replacement etc.).
X