Refine Your Search

Topic

Search Results

Technical Paper

C919 Trailing Edge Assembly Interchangeable Tooling

2019-09-16
2019-01-1880
Traditional Trailing Edge (TE) assembly that utilise fixtures for accurate positioning of aircraft (a/c) parts do not allow for removal of specific tooling from the fixtures to travel with the TE, post assembly. Instead, the tooling that positions all the primary a/c assembly datums generally utilise precision pins of various sizes that index and clamp the a/c ribs. Often it is difficult to remove the pins post assembly before the spar can be taken out of the fixture. Use of hammers is common place to hit pins out of holes which is less than ideal considering the a/c parts can be fragile and the tooling is precision set. Also, the Main Assembly Fixture (MAJ) that will receive the TE will inevitably need to relocate some if not all the primary a/c ribs and therefore will most likely be subject to some amount of persuasion.
Technical Paper

A Phased Approach to Optimized Robotic Assembly for the 777X

2019-03-19
2019-01-1375
Low rate initial production of the 777X flight control surfaces and wing edges has been underway at the Boeing St. Louis site since early 2017. Drilling, inspection, and temporary fastening tasks are performed by automated multi-function robotic systems supplied by Electroimpact. On the heels of the successful implementation of the initial four (4) systems, Phases II and III are underway to meet increasing production demands with three (3) and four (4) new cells coming online, respectively. Assemblies are dedicated to particular cells for higher-rate production, while all systems are designed for commonality offering strategic backup capability. Safe operation and equipment density are optimized through the use of electronic safeguards. New time-saving process capabilities allow for one-up drilling, hole inspection, fastening, fastener inspection, and stem shaving.
Journal Article

11 Reasons to Use Automated Metrology

2019-03-19
2019-01-1369
Aerospace structures manufacturers find themselves frequently engaged in large-scale 3D metrology operations, conducting precision measurements over a volume expressed in meters or tens of meters. Such measurements are often done by metrologists or other measurement experts and may be done in a somewhat ad-hoc fashion, i.e., executed in the most appropriate method according to the lights of the individual conducting the measurement. This approach is certainly flexible but there are arguments for invoking a more rigorous process. Production processes, in particular, demand an automated process for all such “routine” measurements. Automated metrology offers a number of advantages including enabling data configuration management, de-skilling of operation, real time input data error checking, enforcement of standards, consistent process execution and automated data archiving. It also reduces training, setup time, data manipulation and analysis time and improves reporting.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Technical Paper

High Volume Automated Spar Assembly Line (SAL)

2017-09-19
2017-01-2073
The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
Technical Paper

Lights Out Cell Automatic Tool Change Solution for Nut and Collar Anvils with Integrated Fastener Feed Hardware

2017-09-19
2017-01-2097
Automated collar and nut installation requires complex hardware on the wet side of the spar or wing panel. Wet side automatic tool changers are becoming common but an operator is often required to connect electrical, pneumatic and fastener feed system components. This is unacceptable in a lights-out cell, and any fully automatic solution must be reliable while satisfying demanding design requirements. Figure 1 Wet side anvil for nut installation. The 737 Spar Assembly Line (SAL) is a new lights-out machine cell at the Boeing factory in Renton, Washington. The SAL machines are equipped with a unique fully automatic tool changer (ATC). The wet side ATC interface is designed to automatically connect conventional as well as more unique services such as fastener feed. The fastener feed ATC module, called the “spinner,” rotates with the machine’s wet side rotary axis (C axis). It consists of a stack of rotors that rotate inside of a stationary annulus.
Journal Article

Automatic Temporary Fastener Installation System for Wingbox Assembly

2016-09-27
2016-01-2085
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
Technical Paper

Unique Material Handling and Automated Metrology Systems Provides Backbone of Accurate Final Assembly Line for Business Jet

2016-09-27
2016-01-2104
Figure 1 Global 7000 Business Jet. Photo credit: Robert Backus. The customer’s assembly philosophy demanded a fully integrated flexible pulse line for their Final Assembly Line (FAL) to assemble their new business jets. Major challenges included devising a new material handling system, developing capable positioners and achieving accurate joins while accommodating two different aircraft variants (requiring a “flexible” system). An additional requirement was that the system be easily relocated to allow for future growth and reorganization. Crane based material handling presents certain collision and handover risks, and also present a logistics challenge as cranes can become overworked. Automated guided vehicles can be used to move large parts such as wings, but the resulting sweep path becomes a major operational limitation. The customer did not like the trade-offs for either of these approaches.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Journal Article

System for Recirculation of Mobile Tooling

2015-09-15
2015-01-2494
Aircraft assembly systems which require tooling or machinery to pulse or move between multiple positions within a factory can be positioned with high repeatability without high performance foundations or sweeping out large areas of floorspace. An example shows a system of large left and right-hand frames which are positioned at 3 sequential manufacturing steps and then recirculated to the start of production via a central return aisle. The frames are 41 ton actual weight and are 72′ long, similar to a rail car. The system achieves rectangular motion for the recirculation path. The supporting and moving system incorporates low-cost rail in a floor with minimal preparation and simple to use controls. The system is also easily reconfigured if the manufacturing system needs to be altered to meet rate or flow requirements.
Journal Article

Integrated Ball-Screw Based Upset Process for Index Head Rivets Used in Wing Panel Assembly

2015-09-15
2015-01-2491
A new high speed forming process for fatigue rated index head rivets used in wing panel assembly using ball-screw based servo squeeze actuation has been developed. The new process is achieved using a combination of force and position control and is capable of forming to 40,000 lbs at rates of up to 200,000 lbs/second whilst holding the part location to within +/− 10 thousandths of an inch. Multi-axis riveting machines often have positioning axes that are also used for fastener upset. It is often the case that while a CNC is used for positioning control, another secondary controller is used to perform the fastener upset. In the new process, it has been possible to combine the control of the upset process with the machine CNC, thus eliminating any separate controllers. The fastener upset force profile is controlled throughout the forming of the rivet by using a closed loop force control system that has a load cell mounted directly behind the stringer side forming tool.
Journal Article

Panel Assembly Line (PAL) for High Production Rates

2015-09-15
2015-01-2492
Developing the most advanced wing panel assembly line for very high production rates required an innovative and integrated solution, relying on the latest technologies in the industry. Looking back at over five decades of commercial aircraft assembly, a clear and singular vision of a fully integrated solution was defined for the new panel production line. The execution was to be focused on co-developing the automation, tooling, material handling and facilities while limiting the number of parties involved. Using the latest technologies in all these areas also required a development plan, which included pre-qualification at all stages of the system development. Planning this large scale project included goals not only for the final solution but for the development and implementation stages as well. The results: Design/build philosophy reduced project time and the number of teams involved. This allowed for easier communication and extended development time well into the project.
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Technical Paper

Next Generation Mobile Robotic Drilling and Fastening Systems

2014-09-16
2014-01-2259
Electroimpact has developed a second generation of mobile robots with several improvements over the first generation. The frame has been revised from a welded steel tube to a welded steel plate structure, making the dynamic response of the structure stiffer and reducing load deflections while maintaining the same weight. The deflections of the frame have been optimized to simplify position compensation. The caster mechanism is very compact, offers greater mounting flexibility, and improved maneuverability. The mechanism uses a pneumatic airbag for both lifting and suspension. The robot sled has been improved to offer greater rigidity for the same weight, and dual secondary feedback scales on the vertical axis further improve the rigidity of the overall system. Maintenance access has been improved by rerouting the cable and hose trays, and lowering the electrical cabinet.
Technical Paper

Integrated Hole and Countersink Inspection of Aircraft Components

2013-09-17
2013-01-2147
Precision hole inspection is often required for automated aircraft assembly. Direct contact measurement has been proven reliable and accurate for over 20 years in production applications. At the core of the hole measurement process tool are high precision optical encoders for measurement of diameter and countersink depth. Mechanical contact within the hole is via standard 2-point split ball tips, and diametric data is collected rapidly and continuously enabling the system to profile the inner surface at 0 and 90 degrees. Hole profile, countersink depth, and grip length data are collected in 6 seconds. Parallel to the active process, auto-calibration is performed to minimize environmental factors such as thermal expansion. Tip assemblies are selected and changed automatically. Optional features include concave countersink and panel position measurement.
Technical Paper

Mobile Automated Robotic Drilling, Inspection, and Fastening

2013-09-17
2013-01-2338
The versatility of the accurate robot has been increased by coupling it with a mobile platform with vertical axis. The automation can be presented to fixed aircraft components such as wings, fuselage sections, flaps, or other aircraft assemblies requiring accurate drilling, inspection, and fastening. The platform accommodates a tool changer, ride along coupon stand, fastener feed system, and other systems critical for quality automated aircraft assembly. The accurate robot's flexibility is increased by a floor resynchronization system. The indexing system is replaced by an automated two-camera onboard vision system and miniature targets embedded in the factory floor, with accuracy comparable to cup and cone alternatives. The accurate robot can be deployed by casters, curvilinear rail, or air bearings.
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Journal Article

Body Join Drilling for One-Up-Assembly

2013-09-17
2013-01-2296
Over 1,200 large diameter holes must be drilled into the side-of-body join on a Boeing commercial aircraft's fuselage. The material stack-ups are multiple layers of primarily titanium and CFRP. Due to assembly constraints, the holes must be drilled for one-up-assembly (no disassembly for deburr). In order to improve productivity, reduce manual drilling processes and improve first-time hole quality, Boeing set out to automate the drilling process in their Side-of-Body join cell. Implementing an automated solution into existing assembly lines was complicated by the location of the target area, which is over 15 feet (4 meters) above the factory floor. The Side-of-Body Drilling machines (Figure 1) are capable of locating, drilling, measuring and fastening holes with less than 14 seconds devoted to non-drilling operations. Drilling capabilities provided for holes up to ¾″ in diameter through stacks over 4.5″ thick in a titanium/CFRP environment.
X