Refine Your Search

Search Results

Technical Paper

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

2020-03-10
2020-01-0010
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes.
Technical Paper

Automatic Drilling and Fastening System for Large Aircraft Doors

2019-03-19
2019-01-1346
Electroimpact has developed a system for drilling and fastening of cargo door structures which efficiently addresses many of the manufacturing challenges that such parts present. Challenges to door automation include 1) the presence of an inner skin that must be processed, in addition to the outer skin, and 2) a stiff frame structure, which makes the clamping and drilling processes that are typical to automated fastening machines very unforgiving of any errors in workpiece positioning. In this case, the manufacturing cell was to be installed in an existing facility with very limited ceiling height, further complicating the system and process design. New methods were devised to solve these problems, and the solutions found will likely have utility in future applications.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
Technical Paper

Robotic Installation of OSI-Bolts

2015-09-15
2015-01-2512
Electroimpact has developed an automated solution for installing OSI-Bolts on the HStab for Boeing's 787-9 aircraft. This solution utilizes Electroimpact's existing accurate robotic system together with new hardware designed specifically for OSI-Bolts. In addition to automated drilling and fastener installation, this system performs numerous quality checks to insure the installed fastener meets engineering requirements. Before installing the fastener, the system measures actual stack thickness and the length of the fastener to ensure that the proper grip is installed. Torque and angle feedback are recorded during installation which can be used determine if the fastener was installed correctly. The system will also automatically shave the small protuberance on the fastener head left by the broken off fastener stem, which is inherent to the OSI-Bolt. Figure 1 Cell Overview
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
Journal Article

Integrated Ball-Screw Based Upset Process for Index Head Rivets Used in Wing Panel Assembly

2015-09-15
2015-01-2491
A new high speed forming process for fatigue rated index head rivets used in wing panel assembly using ball-screw based servo squeeze actuation has been developed. The new process is achieved using a combination of force and position control and is capable of forming to 40,000 lbs at rates of up to 200,000 lbs/second whilst holding the part location to within +/− 10 thousandths of an inch. Multi-axis riveting machines often have positioning axes that are also used for fastener upset. It is often the case that while a CNC is used for positioning control, another secondary controller is used to perform the fastener upset. In the new process, it has been possible to combine the control of the upset process with the machine CNC, thus eliminating any separate controllers. The fastener upset force profile is controlled throughout the forming of the rivet by using a closed loop force control system that has a load cell mounted directly behind the stringer side forming tool.
Journal Article

System for Recirculation of Mobile Tooling

2015-09-15
2015-01-2494
Aircraft assembly systems which require tooling or machinery to pulse or move between multiple positions within a factory can be positioned with high repeatability without high performance foundations or sweeping out large areas of floorspace. An example shows a system of large left and right-hand frames which are positioned at 3 sequential manufacturing steps and then recirculated to the start of production via a central return aisle. The frames are 41 ton actual weight and are 72′ long, similar to a rail car. The system achieves rectangular motion for the recirculation path. The supporting and moving system incorporates low-cost rail in a floor with minimal preparation and simple to use controls. The system is also easily reconfigured if the manufacturing system needs to be altered to meet rate or flow requirements.
Journal Article

Utilization of a Vision System to Automate Mobile Machine Tools

2014-09-16
2014-01-2271
In an attempt to be more flexible and cost effective, Aerospace Manufacturers have increasingly chosen to adapt a manufacturing style which borrows heavily from the Automotive industry. To facilitate this change in methodologies a system for locating robots has been developed which utilizes cameras for both locating and guidance of a mobile platform for a robot with drilling and fastening end effector.
Technical Paper

Riveting Thin A320 Stacks

2014-09-16
2014-01-2264
The E7000 riveting machine installs NAS1097KE5-5.5 rivets into A320 Section 18 fuselage side panels. For the thinnest stacks where the panel skin is under 2mm (2024) and the stringer is under 2mm (7075), the normal process of riveting will cause deformation of the panel or dimpling. The authors found a solution to this problem by forming the rivet with the upper pressure foot extended, and it has been tested and approved for production.
Journal Article

Rivet and Bolt Injector with Bomb Bay Ejection Doors

2013-09-17
2013-01-2151
Electroimpact's newest riveting machine features a track-style injector with Bomb Bay Ejection Doors. The Bomb Bay Ejection Doors are a robust way to eject fasteners from track style injector. Track style injectors are commonly used by Electroimpact and others in the industry. Using the Bomb Bay Doors for fastener ejection consists of opening the tracks allowing very solid clearing of an injector when ejecting a fastener translating to a more reliable fastener delivery system. Examples of when fastener ejection is needed are when a fastener is sent backwards, when there are two in the tube, or when a machine operator stops or resets the machine during a fastening cycle. This method allows fasteners to be cleared in nearly every situation when ejecting a fastener is required. Additional feature of Electroimpact's new injection system is integrated anvil tool change.
Journal Article

Increasing Machine Accuracy by Spatially Compensating Large Scale Machines for Use in Constructing Aerospace Structures

2013-09-17
2013-01-2298
Starting in 2003 Electroimpact began development on a comprehensive kinematic and compensation software package for machines with large envelopes. The software was first implemented on Electroimpact's Automatic Fiber Placement (AFP) equipment. Implementation became almost universal by 2005. By systematically collecting tracker measurements at various machine poses and then using this software to optimize the kinematic parameters of the machine, we are able to reliably achieve machine positional accuracy of approximately 2x the uncertainty of the measurements themselves. The goal of this paper is to document some of the features of this system and show the results of compensation in the hope that this method of machine compensation or similar versions will become mainstream.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Journal Article

One Piece AFP Spar Manufacture

2011-10-18
2011-01-2592
Manufacturing C cross-sectional components with high aspect ratios out of carbon fiber reinforced composites is desirable by the aircraft industry. Modular AFP heads with short, fixed tow path have the fundamental performance characteristics required to successfully and productively automate the production of these part families. Aircraft parts in this family include wing spars, stringers, and fuselage frames.
Technical Paper

Automatic Feeding of Temporary Fasteners in Confined Spaces

2010-09-28
2010-01-1879
Single Sided Slave Fasteners (SSSF) or Single Sided Temporary Fasteners (SSTF) are increasingly replacing more cumbersome and manual tools for temporary doweling and clamping of aerospace components during assembly. Their ability to clamp provide doweling and clamping reduce the amount of tooling required. Due to their low profile and blind (one-sided) capability, the key benefit of this new technology is the ability to install these fasteners with automated machines. Electroimpact has developed machines to feed primarily SSTF bolts made application-specific by Centrix LLC [ 1 ]. The application discussed in this paper presented problems of confined spaces where a variety of fasteners were required to be fed automatically. To address this, Electroimpact developed new Bolt Injector and Bolt Inserter technology to feed multiple diameters of SSTF bolts in a very small package. Application-specific SSTF were designed such that multiple diameters could be fed through one feed tube.
Technical Paper

Vision System Non Contact Measurement of Pintail Type Fasteners

2010-09-28
2010-01-1870
Accurately measuring the length of a pintail type fastener is limited by the process of forming the fastener. When the pintail is formed its overall length is not dimensionally controlled. To accurately measure the grip of the bolt a vision system is utilized that finds the notch between the tail and bolt shank. The grip, diameter, and angle of the bolt prior to insertion are then measured. This method proves to be more accurate than measuring the bolt mechanically and provides a number of other advantages including; decreased measurement time, improved accuracy, FOD detection, and angle of the bolt in the fingers prior to insertion.
X