Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Assessment of the Plasma Assisted Catalytic Reactor (PACR) Approach to Lean NOx Abatement: The Relative Reducibility of NO and NO2 using #2 Diesel fuel as the Reductant

2000-10-16
2000-01-2962
The plasma assisted catalytic reactor (PACR) approach to lean NOx abatement is a two step process. The non-thermal plasma oxidizes the engine out NO to NO2, which is then reduced to N2 over a catalyst using a hydrocarbon reductant. Whereas it was once believed that the plasma itself directly reduces NOx to N2, it has been shown that the plasma's principle function is to oxidize NO to NO2. This is accomplished without oxidizing SO2 to SO3, resulting in lower sulfate particulate when compared to standard lean NOx catalysis using platinum or reducible oxide catalysts. We have performed reactor studies comparing the relative reducibility of NO2 and NO in a synthetic diesel exhaust using diesel fuel as the hydrocarbon reductant, with attention to time-on stream behavior and determination of NOx reversibly adsorbed on the catalyst. We find that at 200°C, 50% of the NO2 disappearance over Na-ZSM5 is attributable to reversible adsorption on the catalyst.
Technical Paper

Methane Emissions Abatement from Lean Burn Natural Gas Vehicle Exhaust: Sulfur's Impact on Catalyst Performance

1996-10-01
961971
Because of their relatively low particulate make, lean burn natural gas vehicles (NGV's) are a viable approach to meeting the ULEV particulate standards in urban environments where NGV's are substituted for diesel powered buses and other fleet vehicles. Our experience with oxidation catalyst technology for natural gas vehicle emissions abatement has been consistent: that palladium based catalysts maintain excellent NMHC activity and particulate reduction, but methane activity, while initially very high, decreases within the first 50 hours of operation. This paper will show that sulfur oxides at sub-ppm concentrations diminish catalyst methane activity, and that inorganic ash components from the lubricating oil (P, Zn, Ca) do not significantly contribute to the initial catalyst deactivation. Using laboratory simulations, we explore systems approaches to increasing catalyst life.
X