Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

2004-03-08
2004-01-0079
A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
Technical Paper

Influence of Phosphorous Poisoning on TWC Catalysts

2003-11-18
2003-01-3735
Gasoline engine oils contain a variety of additives including phosphorous-based compounds, for maintaining their characteristics. During the life of the vehicle, oil is consumed via piston ring blowby or leakage from valve stem guides. Phosphorous compounds from the consumed oil end up being deposited on the three way conversion catalysts resulting in a degradation of the conversion efficiencies of all three pollutants, hydrocarbons, carbon monoxide and nitrogen oxides. To simulate this deterioration in performance, an accelerated aging cycle has been developed which replicates the effect of the interaction between the phosphorous species and the washcoat components. This paper describes the poison aging protocol and the effect of aging temperature, poison level and duration of aging. In this paper, we will we also discuss some of the catalyst deactivation mechanisms and methods to simulate them using dynamometer-mounted engines.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

A Fundamental Consideration on NOx Adsorber Technology for DI Diesel Application

2002-10-21
2002-01-2889
Diesel engines are far more efficient than gasoline engines of comparable size, and emit less greenhouse gases that have been implicated in global warming. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15 ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same low emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulation. Achieving such low emissions cannot be done through engine development and fuel reformulation alone, and requires application of NOx and particulate matter (PM) aftertreatment control devices. There is a widespread consensus that NOx adsorbers and particulate filter are required in order for diesel engines to meet the 2007 emissions regulations for NOx and PM. In this paper, the key exhaust characteristics from an advanced diesel engine are reviewed.
Technical Paper

Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines

2002-03-04
2002-01-0286
The application of SCR deNOx aftertreatment was studied on two about 12 liter class heavy-duty diesel engines within a consortium project. Basically, the system consists of a dosage system for aqueous urea injection and a vanadia based SCR catalyst, without an upstream or downstream oxidation catalyst. The urea injection system for a DAF and a Renault V.I. (Véhicules Industriels) diesel engine was calibrated on the engine test bench taking into account dynamic effects of the catalyst. For both engine applications NOx reduction was 81% to 84% over the ESC and 72% over the ETC. CO emission increased up to 27%. PM emission is reduced by 4 to 23% and HC emission is reduced by more than 80%. These results are achieved with standard diesel fuel with about 350 ppm sulfur. The test engines and SCR deNOx systems were built into a DAF FT95 truck and a Renault V.I. Magnum truck.
Technical Paper

Chemical Speciation of Exhaust Emissions from Trucks and Buses Fueled on Ultra-Low Sulfur Diesel and CNG

2002-03-04
2002-01-0432
A recently completed program was developed to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different truck and bus fleets operating in Southern California. The primary test fuels, ECD and ECD-1, are produced by ARCO, a BP company, and have less than 15 ppm sulfur content. A test fleet comprised of heavy-duty trucks and buses were retrofitted with one of two types of catalyzed diesel particle filters, and operated for one year. As part of this program, a chemical characterization study was performed in the spring of 2001 to compare the exhaust emissions using the test fuels with and without aftertreatment. A detailed speciation of volatile organic hydrocarbons (VOC), polycyclic aromatic hydrocarbons (PAH), nitro-PAH, carbonyls, polychlorodibenzo-p-dioxins (PCDD) and polychlorodibenzo-p-furans (PCDF), inorganic ions, elements, PM10, and PM2.5 in diesel exhaust was performed for a select set of vehicles.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

A Study of Lean NOx Technology for Diesel Emission Control

2002-03-04
2002-01-0956
The aim of this paper is to investigate the potential of Lean NOx technology for diesel emission control. In this work, the focus is on the precious metal (low temperature) catalyst. Engelhard optimized the catalyst for cells per square inch (cpsi) and Platinum loading. Effect of various parameters, including, reductant type, catalyst volume, space velocity range and injector locations were investigated both analytically and experimentally at Cummins in search for the optimum system design. Both steady state and transient tests were conducted in this work. The precious metal catalysts have a narrow temperature window, however, with the use of proper reductant and an efficient control strategy (to minimize fuel penalty) cycle conversion efficiencies as high as 40% may be obtained for FTP-75. The analysis tool developed to aid the system design is capable of predicting effects of catalyst temperature, NOx concentration, O2 concentration, space velocity etc. on NOx conversion efficiency.
Technical Paper

Catalytic Converter Development for Motorcycle Emission Control

1997-10-27
978518
Catalytic control of motorcycle vehicle emissions requires that the catalytic element be carefully integrated into the exhaust system. The catalyst element physical parameters are optimized to achieve specific exhaust tuning requirements. Since the converter is located inside the muffler, the peak temperatures can severely stress both the catalytic active washcoat materials and the currently used metal monolith structure under some operating conditions. This paper addresses the development of an alternative ceramic monolithic catalyst that can be used for 2 and 4-stroke motorcycle applications. A new mounting technique was developed to contain the ceramic catalytic unit within a holder or converter shell with sufficient strength and durability to withstand the severe environment of 2-stroke engine exhaust.
Technical Paper

Save the Diesel Fueled Engine: A Clean Diesel Engine with Catalytic Aftertreatment - The Alternative to Alternate Fuels

1993-04-01
931182
Off-Highway diesel engines may benefit from exhaust emission control systems developed for on-highway vehicles. Both the diesel oxidation catalyst and the catalytic soot filter are being used to remove diesel smoke and odor. The advantages of both of these technologies are explained. NOx emissions control from diesel engines are now being addressed. Alternate fuels, such as methanol or natural gas, have been designed to replace diesel fuel as a measure to control NOx emissions. To avoid transfer to alternate fuels and permit continued use of diesel fuel in diesel engines, two approaches are being studied. These are the use of exhaust gas recirculation (EGR) and the development of a new technology called a lean NOx reduction catalyst. EGR, if successfully developed, probably will require the use of a catalytic soot filter. Lean NOx catalysts have been developed but still are not at a practical stage yet.
Technical Paper

Effects of Sulfur on Performance of Catalytic Aftertreatment Devices

1992-02-01
920557
In the effort to design reliable diesel engines which meet the strict US Federal Regulations for emissions, considerable progress has been made by engine manufacturers. Particulate emissions are now below 0.25 g/BHPh and after 1994 will be below 0.1 g/BHPh. Diesel fuel has a revised specification limit of 0.05% sulfur as a means to assist diesel engine manufacturers in complying with the 1994 standard. Diesel oxidation catalysts (DOC) have been chosen as another means. A DOC can efficiently oxidize soluble organic particulate matter (SOF) and gaseous hydrocarbons while easily oxidizing SO2 to SO3-the latter being a particulate and undesirable. Selective DOCs have been developed which maintain the activity for SOF and minimize the undesirable SO2 oxidation step. However, performance for gaseous hydrocarbons may be negatively affected.
X