Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Split-Spray Piston Geometry Optimized for HSDI Diesel Engine Combustion

2003-03-03
2003-01-0348
A combustion chamber geometry design optimization study has been performed on a high-speed direct-injection (HSDI) automotive diesel engine at a part-load medium-speed operating condition using both modeling and experiments. A model-based optimization was performed using the KIVA-GA code. This work utilized a newly developed 6-parameter automated grid generation technique that allowed a vast number of piston geometries to be considered during the optimization. Other salient parameters were included that are known to have an interaction with the chamber geometry. They included the start of injection (SOI) timing, swirl ratio (SR), exhaust gas recirculation percentage (EGR), injection pressure, and the compression ratio (CR). The measure of design fitness used included NOx, soot, unburned hydrocarbon (HC), and CO emissions, as well as the fuel consumption. Subsequently, an experimental parametric study was performed using the piston geometry found by the numerical optimization.
Technical Paper

Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

2001-03-05
2001-01-0547
The recently developed KIVA-GA computer code was used in the current study to optimize the combustion chamber geometry of a heavy -duty diesel truck engine and a high-speed direct-injection (HSDI) small-bore diesel engine. KIVA-GA performs engine simulations within the framework of a genetic algorithm (GA) global optimization code. Design fitness was determined using a modified version of the KIVA-3V code, which calculates the spray, combustion, and emissions formation processes. The measure of design fitness includes NOx, unburned HC, and soot emissions, as well as fuel consumption. The simultaneous minimization of these factors was the ultimate goal. The KIVA-GA methodology was used to optimize the engine performance using nine input variables simultaneously. Three chamber geometry related variables were used along with six other variables, which were thought to have significant interaction with the chamber geometry.
X