Refine Your Search

Search Results

Technical Paper

Validation of Advanced Combustion Models Applied to Two-Stage Combustion in a Heavy Duty Diesel Engine

2009-04-20
2009-01-0714
Two advanced combustion models have been validated with the KIVA-3V Release 2 code in the context of two-stage combustion in a heavy duty diesel engine. The first model uses CHEMKIN to directly integrate chemistry in each computational cell. The second model accounts for flame propagation with the G-equation, and CHEMKIN predicts autoignition and handles chemistry ahead of and behind the flame front. A Damköhler number criterion was used in flame containing cells to characterize the local mixing status and determine whether heat release and species change should be a result of flame propagation or volumetric heat release. The purpose of this criterion is to make use of physical and chemical time scales to determine the most appropriate chemistry model, depending on the mixture composition and thermodynamic properties of the gas in each computational cell.
Technical Paper

Heavy-Duty Diesel Combustion Optimization Using Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0716
A multi-objective genetic algorithm methodology was applied to a heavy-duty diesel engine at three different operating conditions of interest. Separate optimizations were performed over various fuel injection nozzle parameters, piston bowl geometries and swirl ratios (SR). Different beginning of injection (BOI) timings were considered in all optimizations. The objective of the optimizations was to find the best possible fuel economy, NOx, and soot emissions tradeoffs. The input parameter ranges were determined using design of experiment methodology. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. For the optimization of piston bowl geometry, an automated grid generator was used for efficient mesh generation with variable geometry parameters. The KIVA3V release 2 code with improved ERC sub-models was used. The characteristic time combustion (CTC) model was employed to improve computational efficiency.
Journal Article

Optimization of a HSDI Diesel Engine for Passenger Cars Using a Multi-Objective Genetic Algorithm and Multi-Dimensional Modeling

2009-04-20
2009-01-0715
A multi-objective genetic algorithm coupled with the KIVA3V release 2 code was used to optimize the piston bowl geometry, spray targeting, and swirl ratio levels of a high speed direct injected (HSDI) diesel engine for passenger cars. Three modes, which represent full-, mid-, and low-loads, were optimized separately. A non-dominated sorting genetic algorithm II (NSGA II) was used for the optimization. High throughput computing was conducted using the CONDOR software. An automated grid generator was used for efficient mesh generation with variable geometry parameters, including open and reentrant bowl designs. A series of new spray models featuring reduced mesh dependency were also integrated into the code. A characteristic-time combustion (CTC) model was used for the initial optimization for time savings. Model validation was performed by comparison with experiments for the baseline engine at full-, mid-, and low-load operating conditions.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Technical Paper

Adaptive Injection Strategies (AIS) for Ultra-Low Emissions Diesel Engines

2008-04-14
2008-01-0058
Homogeneous Charge Compression Ignition (HCCI) combustion is being considered as a practical solution for diesel engines due to its high efficiency and low NOx and PM emissions. However, for diesel HCCI operation, there are still several problems that need to be solved. One is the spay-wall impingement issue associated with early injection, and a further problem is the extension of HCCI operation from low load to higher engine loads. In this study, a combination of Adaptive Injection Strategies (AIS) and a Two-Stage Combustion (TSC) strategy are proposed to solve the aforementioned problems. A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. The TSC concept was applied to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load).
Technical Paper

Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion

2006-04-03
2006-01-0027
A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. A two-stage combustion (TSC) concept was explored to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load). Two combustion modes were combined in this concept. The first stage is ideally Homogeneous Charge Compression Ignition (HCCI) combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions. This can be achieved for example by optimization of two-stage combustion using multiple injection or sprays from two different injectors.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

Application of Micro-Genetic Algorithms for the Optimization of Injection Strategies in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0219
In this paper, optimized single and double injection schemes were found using multi-dimensional engine simulation software (KIVA-3V) and a micro-genetic algorithm for a heavy duty diesel engine. The engine operating condition considered was at 1737 rev/min and 57 % load. The engine simulation code was validated using an engine equipped with a hydraulic-electronically controlled unit injector (HEUI) system. Five important parameters were used for the optimization - boost pressure, EGR rate, start-of-injection timing, fraction of fuel in the first pulse and dwell angle between first and second pulses. The optimum results for the single injection scheme showed significant improvements for the soot and NOx emissions. The start of injection timing was found to be very early, which suggests HCCI-like combustion. Optimized soot and NOx emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively, for the single injection scheme.
Technical Paper

The Use of Variable Geometry Sprays With Low Pressure Injection for Optimization of Diesel HCCI Engine Combustion

2005-04-11
2005-01-0148
A numerical study of the effects of injection parameters and operating conditions for diesel-fuel HCCI operation is presented with consideration of Variable Geometry Sprays (VGS). Methods of mixture preparation are explored that overcome one of the major problems in HCCI engine operation with diesel fuel and conventional direct injection systems, i.e., fuel loss due to wall impingement and the resulting unburned fuel. Low pressure injection of hollow cone sprays into the cylinder of a production engine with the spray cone angle changing during the injection period were simulated using the multi-dimensional KIVA-3V CFD code with detailed chemistry. Variation of the starting and ending spray angles, injection timing, initial cylinder pressure and temperature, swirl intensity, and compression ratio were explored. As a simplified case of VGS, two-pulse, hollow-cone sprays were also simulated.
Technical Paper

Performance Optimization of Diesel Engines with Variable Intake Valve Timing Via Genetic Algorithms

2005-04-11
2005-01-0374
The strategy of variable Intake Valve Closure (IVC) timing, as a means to improve performance and emission characteristics, has gained much acceptance in gasoline engines; yet, it has not been explored extensively in diesel engines. In this study, genetic algorithms are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to investigate the optimum operating variables for a typical heavy-duty diesel engine working with late IVC. The effects of start-of-injection timing, injection duration and exhaust gas recirculation were investigated along with the intake valve closure timing. The results show that appreciable reductions in NOx+HC (∼82%), soot (∼48%) and BSFC (∼7.4%) are possible through this strategy, as compared to a baseline diesel case of (NOx+HC) = 9.48g/kW-hr, soot = 0.17 g/kW-hr and BSFC = 204 g-f/kW-hr. The additional consideration of double injections helps to reduce the high rates of pressure rise observed in a single injection scheme.
Technical Paper

Modeling and Experiments of Dual-Fuel Engine Combustion and Emissions

2004-03-08
2004-01-0092
The combustion and emissions of a diesel/natural gas dual-fuel engine are studied. Available engine experimental data demonstrates that the dual-fuel configuration provides a potential alternative to diesel engine operation for reducing emissions. The experiments are compared to multi-dimensional model results. The computer code used is based on the KIVA-3V code and consists of updated sub-models to simulate more accurately the fuel spray atomization, auto-ignition, combustion and emissions processes. The model results show that dual-fuel engine combustion and emissions are well predicted by the present multi-dimensional model. Significant reduction in NOx emissions is observed in both the experiments and simulations when natural gas is substituted for diesel fuel. The HC emissions are under predicted by numerical model as the natural gas substitution is increased.
Technical Paper

Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations

2004-03-08
2004-01-0558
A reduced chemical reaction mechanism is developed and validated in the present study for multi-dimensional diesel HCCI engine combustion simulations. The motivation for the development of the reduced mechanism is to enhance the computational efficiency of engine stimulations. The new reduced mechanism was generated starting from an existing n-heptane mechanism (40 species and 165 reactions). The procedure of generating the reduced mechanism included: using SENKIN to produce the ignition delay data and solution files, using XSENKPLOT to analyze the base mechanism and to identify important reactions and species, eliminating unimportant species and reactions, formulating the new reduced mechanism, using the new mechanism to generate ignition delay data, and finally adjusting kinetic constants in the new mechanism to improve ignition delay and engine combustion predictions to account for diesel fuel cetane number and composition effects.
Technical Paper

Optimization of Injection Rate Shape Using Active Control of Fuel Injection

2004-03-08
2004-01-0530
The effect of injection rate shape on spray evolution and emission characteristics is investigated and a methodology for active control of fuel injection is proposed. Extensive validation of advanced vaporization and primary jet breakup models was performed with experimental data before studying the effects of systematic changes of injection rate shape. Excellent agreement with the experiments was obtained for liquid and vapor penetration lengths, over a broad range of gas densities and temperatures. Also the predicted flame lift-off lengths of reacting diesel fuel sprays were in good agreement with the experiments. After the validation of the models, well-defined rate shapes were used to study the effect of injection rate shape on liquid and vapor penetration, flame lift-off lengths and emission characteristics.
Technical Paper

Modeling the Effect of Primary Atomization on Diesel Engine Emissions

2003-03-03
2003-01-1041
A new primary breakup model was developed and applied to simulate the diesel fuel spray and atomization process. The continuous liquid fuel jet was simulated by a discrete Lagrangian particle method, and the primary breakup of the jet was calculated using a new 1-D Eulerian method that provides the jet breakup time and drop size distribution. A set of correlations of the breakup characteristics, including the breakup time and drop size, were developed for a range of operating conditions. The correlations were then used in the KIVA code to predict the jet primary breakup. For drop secondary breakups, the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model was employed. The new primary breakup model was first validated by comparison to experimental breakup length and jet liquid tip penetration lengths. Predictions of the new breakup model were also compared with experimental data and predictions of the standard breakup model.
Technical Paper

Reduction of Emissions and Fuel Consumption in a 2-Stroke Direct Injection Engine with Multidimensional Modeling and an Evolutionary Search Technique

2003-03-03
2003-01-0544
An optimization study combining multidimensional CFD modeling and a global, evolutionary search technique known as the Genetic Algorithm has been carried out. The subject of this study was a 2-stroke, spark-ignited, direct-injection, single-cylinder research engine (SCRE). The goal of the study was to optimize the part load operating parameters of the engine in order to achieve the lowest possible emissions, improved fuel economy, and reduced wall heat transfer. Parameters subject to permutation in this study were the start-of-injection (SOI) timing, injection duration, spark timing, fuel injection angle, dwell between injections, and the percentage of fuel mass in the first injection pulse. The study was comprised of three cases. All simulations were for a part load, intermediate-speed condition representing a transition operating regime between stratified charge and homogeneous charge operation.
Technical Paper

An Experimental Study on Emissions Optimization Using Micro-Genetic Algorithms in a HSDI Diesel Engine

2003-03-03
2003-01-0347
Current automotive diesel engine research is motivated by the need to meet more-and-more strict emission regulations. The major target for future HSDI combustion research and development is to find the most effective ways of reducing the soot particulate and NOx emissions to the levels required by future emission regulations. Recently, a variety of statistical optimization tools have been proposed to optimize engine-operating conditions for emissions reduction. In this study, a micro-genetic algorithm technique, which locates a global optimum via the law of “the survival of the fittest”, was applied to a high-speed, direct-injection, single-cylinder (HSDI) diesel engine. The engine operating condition considered single-injection operation using a common-rail fuel injection system was at 1757 rev/min and 45% load.
Technical Paper

Modeling and Simulation of a Dual Fuel (Diesel/Natural Gas) Engine With Multidimensional CFD

2003-03-03
2003-01-0755
A dual fuel engine simulation model was formulated and the combustion process of a diesel/natural gas dual fuel engine was studied using an updated KIVA-3V Computational Fluid Dynamic (CFD) code. The dual fuel engine ignition and combustion process is complicated since it includes diesel injection, atomization and ignition, superimposed with premixed natural gas combustion. However, understanding of the combustion process is critical for engine performance optimization. Starting from a previously validated Characteristic-Timescale diesel combustion model, a natural gas combustion model was implemented and added to simulate the ignition and combustion process in a dual fuel bus engine. Available engine test data were used for validation of both the diesel-only and the premixed spark-ignition operation regimes. A new formulation of the Characteristic-Timescale combustion model was then introduced to allow smooth transition between the combustion regimes.
Technical Paper

Modeling Autoignition and Engine Knock Under Spark Ignition Conditions

2003-03-03
2003-01-0011
A computer model that is able to predict the occurrence of knock in spark ignition engines has been developed and implemented into the KIVA-3V code. Three major sub-models were used to simulate the overall process, namely the spark ignition model, combustion model, and end-gas auto-ignition models. The spark ignition and early flame development is modeled by a particle marker technique to locate the flame kernel. The characteristic-time combustion model is applied to simulate the propagation of the regular flame. The autoignition chemistry in the end-gas was modeled by a reduced chemical kinetics mechanism that is based on the Shell model. The present model was validated by simulating the experimental data in three different engines. The spark ignition and the combustion models were first validated by simulating a premixed Caterpillar engine that was converted to run on propane. Computed cylinder pressure agrees well with the experimental data.
Technical Paper

CFD Optimization of DI Diesel Engine Performance and Emissions Using Variable Intake Valve Actuation with Boost Pressure, EGR and Multiple Injections

2002-03-04
2002-01-0959
A computational optimization study was performed for a direct-injection diesel engine using a recently developed 1-D-KIVA3v-GA (1-Dimensional-KIVA3v-Genetic Algorithm) computer code. The code performs a full engine cycle simulation within the framework of a genetic algorithm (GA) code. Design fitness is determined using a 1-D (one-dimensional) gas dynamics code for the simulation of the gas exchange process, coupled with the KIVA3v code for three-dimensional simulations of spray, combustion and emissions formation. The 1-D-KIVA3v-GA methodology was used to simultaneously investigate the effect of eight engine input parameters on emissions and performance for four cases, which include cases at 2500 RPM and 1000 RPM, with both simulated at high-load and low-load conditions.
Technical Paper

Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling

2001-03-05
2001-01-0547
The recently developed KIVA-GA computer code was used in the current study to optimize the combustion chamber geometry of a heavy -duty diesel truck engine and a high-speed direct-injection (HSDI) small-bore diesel engine. KIVA-GA performs engine simulations within the framework of a genetic algorithm (GA) global optimization code. Design fitness was determined using a modified version of the KIVA-3V code, which calculates the spray, combustion, and emissions formation processes. The measure of design fitness includes NOx, unburned HC, and soot emissions, as well as fuel consumption. The simultaneous minimization of these factors was the ultimate goal. The KIVA-GA methodology was used to optimize the engine performance using nine input variables simultaneously. Three chamber geometry related variables were used along with six other variables, which were thought to have significant interaction with the chamber geometry.
X