Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Development of 4WS Control Algorithm for a SUV

2002-03-04
2002-01-1216
Sport Utility Vehicles (SUV) and light duty trucks have gained in popularity for the last several years and the demand for more car-like behavior has increased, accordingly. Two areas for potential improvement are vehicle stability and maneuverability while parking. 4WS (4 wheel steering system) is known as an effective solution to stability and low speed maneuverability. In this paper, we identify a new systematic design method of two degree of freedom vehicle state feedback control algorithm that can improve vehicle stability, and show its control effects for a SUV with trailer towing. Low speed maneuvering is improved when the rear tires are steered in negative phase relative to the front tires. However with a large rear steer angle at low speed, the vehicle's rear overhang tracks a wider swing-out path than a 2WS vehicle. For this concern, we propose a new swing-out reduction control algorithm.
X