Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Columbus ECLS Activation and Initial Operations

2008-06-29
2008-01-2135
European Space Agency's (ESA's) Columbus module was launched on February 7, 2008. This marks the completion of more than 10 years of development. It is a major step forward for Europe in the area of Environmental Control and Life Support (ECLS) as Columbus contains several major assemblies which have been developed in Europe. These include the Condensing Heat Exchanger, Condensate Water Separator and the Cabin Fans. The paper gives a short overview of the system and its features and it will report the experiences from the initial activation and operations phase.
Technical Paper

Design Approach and Implementation of a Mars Surface Food Production Unit

2005-07-11
2005-01-2824
This paper describes a design proposal for adapting the OGEGU Food Production Unit (FPU) to the surface of Mars in order to produce up to 40% of the diet for a six-member crew by growing a pre-defined set of vegetable food species. The external structure, lighting system and plant support system are assessed using ESM analysis. The study shows that the mass of an FPU operating on the Mars surface, featuring an opaque inflatable structure plus all the required subsystems and equipment, is in the order of 14,000 kg. The required volume is around 150 m3 and the power consumption is around 140 kW. A reduction of c. 20 kW could be obtained by exploiting natural light using transparent materials. Finally, the paper concludes with the identification of some technological gaps that need to be investigated further for the purpose of establishing a feasible FPU on Mars.
Technical Paper

ATV Thermal Control System

2004-07-19
2004-01-2469
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
Technical Paper

Esarad--Improvements to the European Space AgencyS Radiative Analyses

1996-07-01
961374
ESARAD is an integrated suite of analysis tools for thermal radiative analysis. The suite provides modules for: • Geometry Definition; • Calculation of view factor, radiative exchange factor and solar, albedo and planet flux results; •Visualization of models in orbit with pre- and post-processing of radiative and thermal results; • Reporting of all aspects of the model; and • Generation of Input Files for Thermal Analysis tools. ESARAD is driven by a fully developed GUI, providing the user with a simple, intuitive windows, menus, forms interface to all its features. A modern, block structured language can also be used to run ESARAD. This gives the advanced user great power and flexibility to perform the most complex analyses. ESARAD was designed and developed between 1988 and 1991 to replace the VWHEAT software used by ESA at that time.
X