Refine Your Search

Topic

Search Results

Technical Paper

Effects of Anthropometry and Passive Restraint Deployment Timing on Occupant Metrics in Moderate-Severity Offset Frontal Collisions

2024-04-09
2024-01-2749
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position.
Technical Paper

Evaluation of Occupant Kinematics and Kinetics during Moderate Severity Simulated Frontal Impacts with and without Frontal Airbag Deployment

2023-04-11
2023-01-0559
Airbag and seat belt pretensioner deployment characteristics depend on multiple factors, such as the magnitude, direction, and rate of vehicle deceleration as detected by vehicle crash sensors and evaluated by vehicle-specific algorithms. Frontal airbag and pretensioner deployments are likely to be commanded during frontal crash events with high initial vehicle deceleration typically associated with high vehicle change in velocity (delta-V). However, within a range of moderate changes in vehicle speeds, referred to as the “gray zone,” a vehicle-specific algorithm may or may not command deployment depending on crash pulse parameters and occupant sensing, among other items. Publicly available testing in the moderate-speed range is lacking and would be useful to evaluate the effects of airbag and pretensioner deployment on occupant kinematics and loading.
Journal Article

Injury by Delta V in Front, Near-Side, Far-Side and Rear Impacts: Analysis of 1994-2015 NASS-CDS

2022-03-29
2021-36-0089
The risk for severe injury (MAIS 4+F) was determined by crash type, seatbelt use and crash severity (delta V) using 22 years of NASS-CDS from 1994-2015 with all light vehicles and occupants 15+ years old. There were 9 increments of delta V from <16-72+ km/h (<10-45+ mph). Crashes were grouped by the location of damage to the front, near-side, far-side and rear. Injury risk was calculated by dividing the number of severely injured (MAIS 4+F) by the number of exposure (MAIS 0+F) occupants using weighted data. Standard errors were determined. The data and plots provide a national estimate of injury by delta V in front, near-side, far-side and rear impacts based on the multi-year field data in NASS-CDS.
Journal Article

Rear-End Impacts - Part 2: Sled Pulse Effect on Front-Seat Occupant Responses

2022-03-29
2022-01-0854
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact.
Journal Article

Seat Belt Restraint Evidence Generated by Unrestrained Occupant Interaction in a Rollover

2022-03-29
2022-01-0846
Assessment of the physical evidence on a seat belt restraint system provides one source of data for determining an occupant’s seat belt use or non-use during a motor vehicle crash. The evidence typically associated with loading from a restrained occupant has been extensively researched and documented in the literature. However, evidence of loading to the restraint system can also be generated by other means, including the interaction of an unrestrained occupant with a stowed restraint system. The present study evaluates physical evidence on multiple stowed restraint systems generated via interaction with unrestrained occupants during a full-scale dolly rollover crash test of a large multiple passenger van. Unbelted anthropomorphic test devices (ATDs) were positioned in the driver and right front passenger seats and in all designated seating positions in the third, fourth, and fifth rows.
Technical Paper

Seat Belt Latch Plate Design and Pretensioner Deployment Strategies Have Limited Effect on In- and Out-of-Position Occupants in High-Severity Rear-End Collisions

2022-03-29
2022-01-0849
In rear-end collisions, the seatback provides primary occupant restraint during initial rearward motion of the occupant relative to the vehicle interior as the vehicle is accelerated forward by collision forces. When properly used, seat belts contribute to limiting occupant excursion and loading by working in concert with the seatback, as well as managing forward excursion on rebound after rear-end impacts. A lack of data evaluating the role of seat belt restraint component technology in limiting occupant motion and loading during high-severity rear-end impacts has been identified. This knowledge gap is particularly apparent for occupants who are not seated normally, in position, at the time of impact. Previous static pretensioner deployment tests suggest that different combinations of latch plate design and pretensioner deployment strategies might have different effects on occupant restraint.
Technical Paper

Seatback Strength and Its Effect on In-Position and Out-of-Position ATD Loading in High-Speed Rear Impact Sled Tests

2022-03-29
2022-01-0856
Vehicle rear structure stiffness has increased as a result of the requirements in the FMVSS 301R, which has also corresponded to an increase in front-row seat strength. This study evaluates the structural behavior and occupant response associated with production-level seats equipped with body-mounted D-rings, and very stiff all-belt-to-seat (ABTS) in a group of 12 deceleration sled tests. A double-haversine pulse with approximately 100-msec duration was used for all tests, with peak accelerations of approximately 19 g for the 40 km/h (25 mph) tests and peak accelerations of 28 g for the 56 km/h (35 mph) test. This generic pulse was designed to represent a severe rear impact crash involving vehicles with stiffer rear structures. The tests compared occupant responses and resulting structural deformation of an original equipment manufacturer (OEM) production-level driver seat from a pickup and a very stiff modified ABTS. Both seating systems were equipped with dual recliners.
Journal Article

Injury by Delta V in Front, Near-Side, Far-Side and Rear Impacts: Analysis of 1994-2015 NASS-CDS

2022-03-29
2022-01-0835
The risk for severe injury (MAIS 4+F) was determined by crash type, seatbelt use and crash severity (delta V) using 22 years of NASS-CDS from 1994-2015 with all light vehicles and occupants 15+ years old. There were 9 increments of delta V from <16-72+ km/h (<10-45+ mph). Crashes were grouped by the location of damage to the front, near-side, far-side and rear. Injury risk was calculated by dividing the number of severely injured (MAIS 4+F) by the number of exposure (MAIS 0+F) occupants using weighted data. Standard errors were determined. The data and plots provide a national estimate of injury by delta V in front, near-side, far-side and rear impacts based on the multi-year field data in NASS-CDS.
Technical Paper

Effect of ATD Size, Vehicle Interior and Restraint Misuse on Second-Row Occupant Kinematics in Frontal Sled Tests

2021-04-06
2021-01-0914
Interest in rear-seat occupant safety has increased in recent years. Information relevant to rear-seat occupant interior space and kinematics are needed to evaluate injury risks in real-world accidents. This study was conducted to first assess the effect of size and restraint conditions, including belt misuse, on second-row occupant kinematics and to then document key clearance measurements for an Anthropomorphic Test Device (ATD) seated in the second row in modern vehicles from model years 2015-2020. Twenty-two tests were performed with non-instrumented ATDs; three with a 5th percentile female Hybrid III, 10 tests with a 10-year-old Hybrid III, and 9 tests with a 6-year-old Hybrid III. Test conditions included two sled bucks (mid-size car and sport utility vehicle (SUV)), two test speeds (56 and 64 km/h), and various restraint configurations (properly restrained and improperly restrained configurations). Head and knee trajectories were assessed.
Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Technical Paper

Micro-Mobility Vehicle Dynamics and Rider Kinematics during Electric Scooter Riding

2020-04-14
2020-01-0935
Micro-mobility is a fast-growing trend in the transportation industry with stand-up electric scooters (e-scooters) becoming increasingly popular in the United States. To date, there are over 350 ride-share e-scooter programs in the United States. As this popularity increases, so does the need to understand the performance capabilities of these vehicles and the associated operator kinematics. Scooter tip-over stability is characterized by the scooter geometry and controls and is maintained through operator inputs such as body position, interaction with the handlebars, and foot placement. In this study, testing was conducted using operators of varying sizes to document the capabilities and limitations of these e-scooters being introduced into the traffic ecosystem. A test course was designed to simulate an urban environment including sidewalk and on-road sections requiring common maneuvers (e.g., turning, stopping points, etc.) for repeatable, controlled data collection.
Technical Paper

Characterization of Thoracic Spinal Development by Age and Sex with a Focus on Occupant Safety

2020-04-14
2020-01-0520
Spine degeneration can lower injury tolerance and influence injury outcomes in vehicle crashes. To date, limited information exists on the effect of age and sex on thoracic spine 3-dimensional geometry. The purpose of this study is to quantify thoracic spinal column and canal geometry using selected geometrical measurement from a large sample of CT scans. More than 33,488 scans were obtained from the International Center for Automotive Medicine database at the University of Michigan under Institutional Review Board approval (HUM00041441). The sample consisted of CT scans obtained from 31,537 adult and 1,951 pediatric patients between the ages of 0 to 99 years old. Each scan was processed semi-automatically using custom algorithms written in MATLAB (The Math Works, Natick, MA). Five geometrical measurements were collected including: 1) maximum spinal curvature depth (D), 2) T1-to-T12 vertical height (H), 3) Kyphosis Index (KI), 4) kyphosis angle, and 5) spinal canal radius.
Technical Paper

Evaluation of Laminated Side Window Glazing Coding and Rollover Ejection Mitigation Performance Using NASS-CDS

2020-04-14
2020-01-1216
Occupant ejection has been identified as a safety problem for decades, particularly in rollover crashes. While field accident studies have repeatedly demonstrated the effectiveness of seat belts in mitigating rollover ejection and injuries, the use of laminated glass in side window positions has been suggested as a means to mitigate occupant ejection. Limited data is available on the field performance of laminated glass in preventing ejection. This study utilized 1997-2015 NASS-CDS data to investigate the reliability of the glazing coding variables in the database and determine if any conclusions can be drawn regarding the effect of different side window glazing types on occupant ejection. An initial query was run for 1997-2016 model year vehicles involved in side impacts to evaluate glazing coding within NASS-CDS.
Technical Paper

Evaluation of Laminated Side Glazing and Curtain Airbags for Occupant Containment in Rollover

2020-04-14
2020-01-0976
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants.
Technical Paper

The Effect of Crash Severity and Structural Intrusion on ATD Responses in Rear-End Crashes

2020-04-14
2020-01-1224
This study assesses vehicle and occupant responses in six vehicle-to-vehicle high-speed rear impact crash tests conducted at the Exponent Test and Engineering Center. The struck vehicle delta Vs ranged from 32 to 76 km/h and the vehicle centerline offsets varied from 5.7 to 114 cm. Five of the six tests were conducted with Hybrid III ATDs (Anthropometric Test Device) with two tests using the 50th male belted in the driver seat, one test with an unbelted 50th male in the driver seat, one test with a 95th male belted in the driver seat, and one with the 5th female lap belted in the left rear seat. All tests included vehicle instrumentation and three tests included ATD instrumentation. The ATD responses were analyzed and compared to corresponding IARVs (injury assessment reference values). Ground-based and onboard vehicle videos were synchronized with the vehicle kinematic data and biomechanical responses.
Technical Paper

Injury Rates by Crash Severity, Belt Use and Head Restraint Type and Performance in Rear Impacts

2020-04-14
2020-01-1223
This study assesses the exposure distribution and injury rate (MAIS 4+F) to front-outboard non-ejected occupants by crash severity, belt use and head restraint type and damage in rear impacts using 1997-2015 NASS-CDS data. Rear crashes with a delta V <24 km/h (15 mph) accounted for 71% of all exposed occupants. The rate of MAIS 4+F increased with delta V and was higher for unbelted than belted occupants with a rate of 11.7% ± 5.2% and 6.0% ± 1.5% respectively in 48+ km/h (30 mph) delta V. Approximately 12% of front-outboard occupants were in seats equipped with an integral head restraint and 86% were with an adjustable head restraint, irrespective of crash severity. The overall injury rate was 0.14% ± 0.05% and 0.22% ± 0.06%, respectively. It was higher in cases where the head restraint was listed as “damaged”. Thirteen cases involving a lap-shoulder belted occupant in a front-outboard seat in which “damage” to the adjustable head restraint was identified.
Technical Paper

The Effects of Active and Conventional Head Restraints on Front Seat Occupant Responses in Rear Impacts

2020-04-14
2020-01-1217
This study assesses front seat occupant responses in rear impacts with active head restraints (AHR) and conventional head restraints (CHR) using field accident data and test data from the Insurance Institute for Highway Safety (IIHS). 2003-2015 NASS-CDS data were analyzed to determine injury rates in 1997+ model year seats equipped with AHR and CHR. Results indicated that less than 4% of occupants were in seats equipped with AHR. Crashes of delta-V <24 km/h accounted for more than 70% of all exposed front seat occupants, irrespective of head restraint design. Rear crashes with a delta-V < 24 km/h included 35.6% fewer occupants who sustained a MAIS 1-2 injury overall and 26.4% fewer who sustained a MAIS 1-2 cervical injury in vehicles equipped with AHR compared to CHR. In IIHS 16 km/h rear sled tests, the biomechanical response of an instrumented BioRID was evaluated on seats with AHR and CHR. HIC15 and concussion risk were calculated from head acceleration data.
Journal Article

Passenger Vehicle Dynamic Response and Characterization of Side Structure during Low- to Moderate-Speed Side Impacts

2019-04-02
2019-01-0420
A significant portion of real-world passenger vehicle side impacts occur at lower speeds than testing conducted by the National Highway Traffic Safety Administration (NHTSA) or the Insurance Institute for Highway Safety (IIHS). Test data from low- to moderate-speed side impacts involving late-model passenger vehicles is limited, making the evaluation of vehicle impact response, occupant loading, and injury potential challenging. This study provides the results of low- to moderate-speed impact testing involving a late-model mid-size sedan. Two full-scale Non-Deformable Moving Barrier (NDMB) side impact crash tests were conducted at speeds of 6.2 mph (10.0 kph) and 13.4 mph (21.6 kph). Instrumentation on the late-model sedan used for the test series included tri-axis accelerometers and seat belt load cells.
Technical Paper

Head and Neck Loading Conditions over a Decade of IIHS Rear Impact Seat Testing

2019-04-02
2019-01-1227
Rear-end impacts are the most common crash scenario in the United States. Although automated vehicle (AV) technologies, such as frontal crash warning (FCW) and automatic emergency braking (AEB), are mitigating and preventing rear-end impacts, the technology is only gradually being introduced and currently has only limited effectiveness. Accordingly, there is a need to evaluate the current state of passive safety technologies, including the performance of seatbacks and head restraints. The objective of this study was to examine trends in head and neck loading during rear impact testing in new vehicle models over the prior decade. Data from 601 simulated rear impact sled tests (model years 2004 to 2018) conducted as a part of the Insurance Institute for Highway Safety (IIHS) Vehicle Seat/Head Restraint Evaluation Protocol were obtained.
Technical Paper

Passenger Vehicle Response and Damage Characteristics of Front and Rear Structures during Low- to Moderate-Speed Impacts

2019-04-02
2019-01-0415
A significant number of vehicle-to-vehicle collisions involve front-to-rear impacts at low- to moderate-speeds. While a variety of studies have been conducted since the 1990s involving fore-aft collisions, those discussing the response of late model passenger vehicles during progressively more severe impacts are limited. In this study, four inline, front-rear tests were conducted using two midsize sedans of the same make, model, and year. An instrumented Hybrid III 50th percentile-male Anthropomorphic Test Device (ATD) was located in the driver seat of each sedan and was restrained using the standard three-point seat belt system. Instrumentation on the vehicles included tri-axis accelerometers and seat belt load cells. For each test, the centerlines of the vehicles were aligned, and the striking vehicle impacted the stationary target vehicle at closing speeds of 4.6, 7.9, 13.5, and 20.9 mph (7.4, 12.7, 21.7, and 33.6 kph).
X