Refine Your Search

Topic

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

Optimization of Aluminum Sleeve Design for the tow eye Durability Using DFSS Approach

2023-04-11
2023-01-0092
The automotive industry is moving towards larger SUVs and also electrification is a need to meet the carbon neutrality target. As a result, we see an increase in overall gross vehicle weight (GVW), with the additional weight coming from the HV battery pack, electric powertrain, and other electrical systems. Tow-eye is an essential component that is provided with every vehicle to use for towing during an emergency vehicle breakdown. The tow-eye is usually connected to the retainer/sleeve available in the bumper system and towed using the recovery vehicle or other car with towing provision. Therefore, the tow-eye should meet the functional targets under standard operating conditions. This study is mainly for cars with bumper and tow-eye sleeves made of aluminum which is used in the most recent development of vehicles for weight-saving opportunities. Tow-eye systems in aluminum bumpers are designed to avoid any bending or buckling of the sleeve during towing for whatever the GVW loads.
Technical Paper

Vehicle Underbody Structural Performance Prediction During Waterfording Events Using A One Way Coupled CFD-CAE Approach

2023-04-11
2023-01-0609
Water fording events are one of the most challenging situations that vehicles undergo during their lifetime. During these events the underbody components (e.g. Front fascia, Bellypan, wheel liner etc.) are subject to very high loads. Typically, vehicle water fording tests are performed for various depths of water at prescribed vehicle speeds. Water fording tests are usually carried out during the proto phase of the vehicle development program to ensure acceptable performance. If issues are discovered, making changes to the fascia or body panels are typically very expensive. To avoid late changes, a fully virtual methodology was developed to facilitate vehicle water fording performance. The simulation is targeted to evaluate multiple aspects such as air induction system and estimation of hydrodynamic loads on body panel components.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Application of DFSS Taguchi Method to Design Robust Shock Tower

2021-04-06
2021-01-0234
Design for Six Sigma (DFSS) is an essential tool and methodology for innovation projects to improve the product design/process and performance. This paper aims to present an application of the DFSS Taguchi Method for an automotive/vehicle component. High-Pressure Vacuum Assist Die Casting (HPVADC) technology is used to make Cast Aluminum Front Shock Tower. During the vehicle life, Shock Tower transfers the road high impact loads from the shock absorber to the body structure. Proving Ground (PG) and washout loads are often used to assess part strength, durability life and robustness. The initial design was not meeting the strength requirement for abusive washout loads. The project identified eight parameters (control factors) to study and to optimize the initial design. Simulation results confirmed that all eight selected control factors affect the part design and could be used to improve the Shock Tower's strength and performance.
Technical Paper

Novel Methodology to Compute Halfshaft Joint Forces and Virtually Simulate Powertrain Wiggle

2021-04-06
2021-01-0665
Vibrations affect vehicle occupants and should be prevented early in design process. Powertrain (PT) wiggle is one of the well-known issues. It is the 3rd order lateral vibration, forced by half shaft inner LH/RH plunging tripod joints [1,2]. Lateral PT resonance (7-15Hz) occurs at certain vehicle speed during acceleration and may excite lateral, pitch and roll PT modes. Typically, PT wiggle occurs in speed range of 5-25kph. Vibration is noticeable on driver and passenger seats mostly in lateral direction. The inner half shaft joints are the major source of vibration. Unfortunately, existing MBD tools like Adams [3] are missing detailed tripod joint representation because of complex mechanical interactions inside the joint. At least three sliding contacts between tripod rollers and joint housing, lubricant inside the can and combination of rotation and plunging make the modeling too complicated.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

Adaptive Sampling in the Design Space Exploration of the Automotive Front End Cooling Flow

2020-04-14
2020-01-0149
One of the key inputs 1-D transient simulation takes is a detailed front end cooling flow map. These maps that are generated using a full vehicle Three-dimensional Computational Fluid Dynamics (3D CFD) model require expensive computational resources and time. This paper describes how an adaptive sampling of the design space allowed the reduction of computational efforts while keeping desired accuracy of the analysis. The idea of the method was to find a pattern of Design of Experiments (DOE) sampling points for 3D CFD simulations that would allow a creation of an approximation model accurate enough to predict output parameter values in the entire design space of interest. Three procedures were implemented to get the optimal sampling pattern.
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
Technical Paper

Frame Structure Durability Development Methodology for Various Design Phases

2020-04-14
2020-01-0196
It is a challenging task to find an optimal design concept for a truck frame structure given the complexity of loading conditions, vehicle configurations, packaging and other requirements. In addition, there is a great emphasis on light weight frame design to meet stringent emission standards. This paper provides a framework for fast and efficient development of a frame structure through various design phases, keeping durability in perspective while utilizing various weight reduction techniques. In this approach frame weight and stiffness are optimized to meet strength and durability performance requirements. Fast evaluation of different frame configurations during the concept phase (I) was made possible by using DFSS (Design for Six Sigma) based system synthesis techniques. This resulted in a very efficient frame ladder concept selection process.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

Application of Laminated Steels for Stamped Bumpers

2020-04-14
2020-01-1055
Light-weight solutions for stamped steel components that exhibit the same or similar appearance properties for purposes of authentic feel and perception to customers will play a critical role as the progress towards reaching maximum fuel efficiency for large vehicles continues. This paper outlines the potential uses for laminated steel in large stamped steel bumper applications that would normally be stamped with thick sheet metal in order to meet vehicle level functional objectives. The paper presents the investigation of the one-for-one drop-in capabilities of the laminate steel material to existing stamping dies, special processing considerations while manufacturing, vehicle level performance comparisons, and class “A” coating options and process needs. Most of all, it will highlight the significant vehicle weight saving benefits and opportunities as compared to current production stamped steel bumpers.
Technical Paper

Enhanced Windshield CAE NVH Model for Interior Cabin Noise

2020-04-14
2020-01-1100
This paper describes a reliable CAE methodology to model the linear vibratory behavior of windshields. The windshield is an important component in vehicle NVH performance. It plays an integral role in interior cabin noise. The windshield acts as a large panel typically oriented near vertical at the front of vehicle’s acoustic cavity, hence modeling it accurately is essential to have a reliable prediction of cabin interior noise. The challenge to model the windshield accurately rises from the structural composition of different types of windshields. For automotive applications, windshields come in several structural compositions today. In this paper, we will discuss two types of windshield glass used primarily by automotive manufacturers. First type is the typical laminated glass with polyvinyl butyral (PVB) layer and second type is the acoustic glass with PVB and vinyl layers. Acoustic glass improves acoustic characteristics of the glass in a frequency range of ~ 1200 Hz to ~4000 Hz.
Technical Paper

Parametric Modelling and Performance Analysis of HVAC Defroster Duct Using Robust Optimization Methodology

2020-04-14
2020-01-1250
Nowadays development of automotive HVAC is a challenging task wherein thermal comfort and safety are very critical factors to be met. HVAC system is responsible for the demisting and defrosting of the vehicle’s windshield and for creating/maintaining a pleasing environment inside the cabin by controlling airflow, velocity, temperature and purity of air. Fog or ice which forms on the windshield is the main reason for invisibility and leads to major safety issues to the customers while driving. It has been shown that proper clear visibility for the windshield could be obtained with a better flow pattern and uniform flow distribution in the defrost mode of the HVAC system and defrost duct. Defroster performance has received significant attention from OEMs to meet the specific global performance standards of FMVSS103 and SAE J902. Therefore, defroster performance is seriously taken into consideration during the design of HVAC system and defroster duct.
Journal Article

The Application of Simplified Loadpath Models to Improve Body Structure Knowledge

2020-04-14
2020-01-0912
Simplified Loadpath Models (SLMs) of the advanced body in white (BIW) design concept provide a highly flexible and rapid platform to explore body structure loadpath alternatives and conduct performance:weight optimization. The SLM modelling process combines higher order Beam and Bush finite elements with coarsened Shell-meshed panels to represent the body structure. While the benefits of loadpath optimization through Beam element parameter variation is well-documented and applied extensively for these types of models, this paper covers another valuable benefit of the SLMs; to provide a better understanding of the sensitivities and influence of joint stiffnesses on key body structure attributes. This data provides valuable information that can be leveraged to support more intelligent and efficient body structure joint designs.
Journal Article

Guidelines for SUV Bodywork Design Focused on Aerodynamic Drag Reduction Using the Generic AeroSUV Model

2020-04-14
2020-01-0478
SUV Aerodynamics has received increased attention as the stake this segments holds in the automotive market keeps growing year after year, as well as its direct impact on fuel economy. Understanding the key physics in order to accomplish both fuel efficient and aesthetic products is paramount, which indeed gave origin to a major initiative to foster collaborative aerodynamic research across academia and industry, the so-called DrivAer model. In addition to this sedan-based model, a new dedicated SUV generic model, called AeroSUV [1], has been introduced in 2019, also intended to provide a common framework for aerodynamic research for both experimental work and numerical simulation validation. The present paper provides an area of common ground for SUV bodywork design focused on aerodynamic drag reduction by investigating both Estate and Fast back configurations of the generic AeroSUV model.
Journal Article

Assessing Fit and Finish Design Sensitivity by Mapping Measurements to Utility

2020-04-14
2020-01-0600
This paper proposes a method to evaluate the sensitivity of the perceived quality of a panel interface design to variation in the measurements of fit and finish. The novelty of this approach is in the application of the concept of utility to fit and finish. The significance is in the ability to evaluate alternative designs with regard to perceived quality long before time and money are spent on their realization. In the automotive industry “fit and finish” is the term applied to the precision of the alignment of one part to another. Fit and finish gives the buyer a sense of the overall quality of the vehicle purely from an aesthetic perspective. Fit and finish is usually evaluated by the manufacturer through dimensional measurements of the gap and flushness conditions between panels.
Technical Paper

New Half Shaft Bench Test Methodology for NVH Characterization

2019-06-05
2019-01-1558
The main purpose of this paper is to develop a reliable bench test to understand the vibratory behavior of the half shafts under applied torque comparable to an idle condition. In some cases, the half shaft path is a major factor influencing the idle vibration in the vehicle. At idle condition vehicle vibrations are caused by engine excitation and then they pass through different paths to the body structure. Half shaft manufacturers generally characterize shaft joints for their frictional behavior and typically there is no data for vibration characteristics of the half shaft under idle conditions. However, for predictive risk management, the vibratory behavior of the half shaft needs to be identified. This can be achieved from measured frequency response functions under preloaded test conditions.
Technical Paper

Automotive HVAC Dual Unit System Cool-Down Optimization Using a DFSS Approach

2019-04-02
2019-01-0892
Automotive AC systems are typically either single unit or dual unit systems, while the dual unit systems have an additional rear evaporator. The refrigerant evaporates inside these heat exchangers by taking heat and condensing the moisture from the recirculated or fresh air that is being pushed into the car cabin by air blowers. This incoming cold air in turn brings the cabin temperature and humidity to a level that is comfortable for the passengers. These HVAC units have their own thermal expansion valve to set the refrigerant flow, but both are connected to the main AC refrigerant loop. The airflows, however, are controlled independently for front and rear unit that can affect the temperature and amount of air coming into the cabin from each location and consequently the overall cabin cool-down performance.
X